Given parameters:
Mass of the car = 1000kg
Unknown:
Height = ?
To find the heights for the different amount potential energy given, we need to understand what potential energy is.
Potential energy is the energy at rest due to the position of a body.
It is mathematically expressed as:
P.E = mgh
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height of the car
Now the unknown is h, height and we make it the subject of the expression to make for easy calculation.
h = 
<u>For 2.0 x 10³ J;</u>
h =
= 0.204m
<u>For 2.0 x 10⁵ J;</u>
h =
= 20.4m
<u>For 1.0kJ = 1 x 10³J; </u>
h =
= 0.102m
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
Answer:
706.68 N
Explanation:
By Hooke's law,


Using the values in the question,

When e = 0.4 m,

You can’t solve it because you don’t have c in the question
Answer:
Magnitude of its angular momentum = 0.0017 kgm²/s
Explanation:
Angular momentum, L = Iω
I is mass moment of inertia and ω is angular velocity.
Phonograph is in disc shape,

Radius = 0.5 x 48 = 24 cm = 0.24 m
Angular velocity, ω = 3.2 rad/s
Mass, M = 18 g = 0.018 kg
Substituting

Magnitude of its angular momentum = 0.0017 kgm²/s