
When two bodies collide with each other in the absence of an external force, then the total final momentum of the bodies is equal to their total initial momentum.
Answer:
The formula for potential energy depends on the force acting on the two objects. For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m / s2 at the surface of the earth) and h is the height in meters.
Explanation:
Sub to Beast_Building on yt
Answer:
x = 50 N
Explanation:
Given that we have a net force, a mass, and acceleration, we can use the fundamental formula for force found in newton's second law which is F = m × a.
Given a mass of 150 kg, and an acceleration 3.0m/s². We can substitute these two values in our formula to calculate the magnitude of these forces or it's net force to identify the unknown force acting on our known force for this situation to work.
_______
F (Net force) = F2 (Second force which we are given) - F1 (First force) = m × a
m (mass which we are given) = 150 kg
a (acceleration which we are given) = 3.0m/s
________
So F = m × a → F2 - F1 = m × a →
500 - F1 = 150 × 3.0 → 500 - F1 = 450 →
-F1 = -50 → F1 = 50
Answer:
We have a not significant increase of the population until 1700s or 1800s and then a significant increase growth from these years to the present.
Explanation:
From the figure attached we see the evolution of the human population since early times (1050).
We see that from 1050 until 1750-1850 we have an increase slowly with a low value for the increase per year.
But after these years (1750-1850) we see a considerable increase of the population, like an exponential model.
So then we can conclude in general terms this:
We have a not significant increase of the population until 1700s or 1800s and then a significant increase growth from these years to the present.
Answer: 40.4M/s
Solution: 46.6/1.15 = 40.4347826 then round it to a single decimal point, since 3 is lower than 5 it will be rounded to 40.4