1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
3 years ago
8

Which statements accurately describe the shape of Earth’s orbit around the Sun? Check all that apply.

Physics
2 answers:
damaskus [11]3 years ago
4 0
<span>The Earth’s orbit is a nearly circular ellipse.
</span><span>The Sun is located at one of the two focal points.</span>

The Earth moves around the Sun in an orbit that is almost but not quite circular. As Kepler proved in the seventeenth century, the orbit is actually an ellipse. A parameter called the eccentricity (e) defines the degree of departure from a circle. A value of e=0 would indicate a circle whereas a value of e=0.9 would indicate a very elongated ellipse. The eccentricity of the Earth's orbit is currently e=0.0167.
anyanavicka [17]3 years ago
4 0

2. The Earth’s orbit is a nearly circular ellipse.

5. The Sun is located at one of the two focal points.

These are the two correct answers.

You might be interested in
A fireworks rocket is fired vertically upward. At its maximum height of 90.0 m , it explodes and breaks into two pieces, one wit
Alex73 [517]

Answer:

Ai. Speed of the fragment with mass mA= 1.35 kg is 34.64 m/s

Aii. Speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. 475.3 m

Explanation:

A. Determination of the speed of each fragment.

I. Determination of the speed of the fragment with mass mA = 1.35 kg

Mass of fragment (m₁) = 1.35 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₁) =?

KE = ½m₁u₁²

810 = ½ × 1.35 × u₁²

810 = 0.675 × u₁²

Divide both side by 0.675

u₁² = 810 / 0.675

u₁² = 1200

Take the square root of both side.

u₁ = √1200

u₁ = 34.64 m/s

Therefore, the speed of the fragment with mass mA = 1.35 kg is 34.64 m/s

II. I. Determination of the speed of the fragment with mass mB = 0.270 kg

Mass of fragment (m₂) = 0.270 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₂) =?

KE = ½m₂u₂²

810 = ½ × 0.270 × u₂²

810 = 0.135 × u₂²

Divide both side by 0.135

u₂² = 810 / 0.135

u₂² = 6000

Take the square root of both side.

u₂ = √6000

u₂ = 77.46 m/s

Therefore, the speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. Determination of the distance between the points on the ground where they land.

We'll begin by calculating the time taken for the fragments to get to the ground. This can be obtained as follow:

Maximum height (h) = 90.0 m

Acceleration due to gravity (g) = 10 m/s²

Time (t) =?

h = ½gt²

90 = ½ × 10 × t²

90 = 5 × t²

Divide both side by 5

t² = 90/5

t² = 18

Take the square root of both side

t = √18

t = 4.24 s

Thus, it will take 4.24 s for each fragments to get to the ground.

Next, we shall determine the horizontal distance travelled by the fragment with mass mA = 1.35 kg. This is illustrated below:

Velocity of fragment (u₁) = 34.64 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₁) =?

s₁ = u₁t

s₁ = 34.64 × 4.24

s₁ = 146.87 m

Next, we shall determine the horizontal distance travelled by the fragment with mass mB = 0.270 kg. This is illustrated below:

Velocity of fragment (u₂) = 77.46 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₂) =?

s₂ = u₂t

s₂ = 77.46 × 4.24

s₂ = 328.43 m

Finally, we shall determine the distance between the points on the ground where they land.

Horizontal distance travelled by the 1st fragment (s₁) = 146.87 m

Horizontal distance travelled by the 2nd fragment (s₂) = 328.43 m

Distance apart (S) =?

S = s₁ + s₂

S = 146.87 + 328.43

S = 475.3 m

Therefore, the distance between the points on the ground where they land is 475.3 m

3 0
3 years ago
IN WHAT CONDITION DO SOUND ECHO
DerKrebs [107]

Answer:

The conditions necessary for hearing the echo. The distance between the sound source and the reflecting surface must not be less than 17 metres where the time period between hearing the original sound and its echo should not be less than 0.1 of a second.

6 0
2 years ago
Chris threw a basketball a distance of 27.5 m to score and win his
salantis [7]

Answer:

v₀ = 16.55 m/s

Explanation:

This motion of the ball can be modeled as a projectile motion with following data:

R = Range of Projectile = 27.5 m

θ = Launch Angle = 50°

g = acceleration due to gravity = 9.81 m/s²

v₀ = Initial Speed of Ball = ?

Therefore, using formula for range of projectile, we have:

R = \frac{v_{0}^2\ Sin2\theta}{g}\\\\v_{0}^2 = \frac{Rg}{Sin2\theta}\\\\v_{0}^2 = \frac{(27.5\ m)(9.81\ m/s^2)}{Sin100^o}\\\\v_{0} = \sqrt{273.93\ m^2/s^2}

<u>v₀ = 16.55 m/s</u>

8 0
3 years ago
A sort of "projectile launcher" is shown below. A large current moves in a closed loop composed of fixed rails, a power supply,
Zarrin [17]

Answer:

wallah i don't understand anything with my stoopid brain

Explanation:

3 0
2 years ago
Given:A=6x-2y B:-4x-8y C:-3x+9y. Commute A+B-C
DedPeter [7]
<span>A+B-C
</span><span>A = 6x - 2y
B = -4x - 8y
C = -3x + 9y

(</span>6x - 2y) + (-4x - 8y) - (-3x + 9y)
(6x - 2y) + (-4x - 8y) + (3x - 9y)
2x -10y + (3x - 9y)

5x - 19y
8 0
3 years ago
Other questions:
  • Which of the following best describes what occurs in a fusion reaction?
    5·1 answer
  • Which of the following is the best definition of viscosity? A. the tendency of a fluid to support a floating object B. the abili
    13·2 answers
  • The two types of decomposers
    11·1 answer
  • Your car's speedometer works in much the same way as its odometer, except that it converts the angular speed of the wheels to a
    6·1 answer
  • A bus starting from rest moves with a uniform acceleration of 0.1 ms ^-2 for 2 minutes.Find the speed acquired then find the dis
    8·1 answer
  • Natural selection is part of which step of speciation? *
    12·2 answers
  • Newton's law of universal gravitation is represented by f = g mm r2 where f is the gravitational force, m and m are masses, and
    7·1 answer
  • Two long, parallel wires carry currents in the same direction. If I1 = 10 A, and I2 = 20 A, and they are d = 1.0 m apart, what i
    9·1 answer
  • If we assume that the metallic plates are perfect conductors, the electric field in their interiors must vanish. given that the
    11·1 answer
  • Cassy shoots a large marble (Marble A, mass: 0.06kg) at a smaller marble (Marble B, mass: 0.03kg) that is sitting still. Marble
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!