Answer is: an oxybromate compound is KBrO₄ (x = 4).
ω(Br) = 43.66% ÷ 100%.
ω(Br) = 0.4366; mass percentage of bromine.
If we take 100 grams of compound:
m(Br) = ω(Br) · 100 g.
m(Br) = 0.4366 · 100 g.
m(Br) = 43.66 g; mass of bromine.
n(Br) = m(Br) ÷ M(Br).
n(Br) = 43.66 g ÷ 79.9 g/mol,
n(Br) = 0.55 mol; amoun of bromine.
From chemical formula (KBrOₓ), amount of potassium is equal to amount of bromine: n(Br) = n(K).
m(K) = 0.55 mol · 39.1 g/mol.
m(K) = 21.365 g; mass of potassium in the compound.
m(O) = 100 g - 21.365 g - 43.66 g.
m(O) =34.97 g; mass of oxygen.
n(O) = 34.97 g ÷ 16 g/mol.
n(O) = 2.185 mol.
n(K) : n(Br) : n(O) = 0.55 mol : 0.55 mol : 2.185 mol /÷ 0.55 mol.
n(K) : n(Br) : n(O) = 1 : 1 : 4.
Answer:
V = 0.0327 L.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the liters of C3H6O by the definition of density. We can tell the density of this substance as that of acetone (0.784 g/mL) and therefore calculate the liters as shown below:

Regards!
The answer is 100 Pa.
The formula for calculating pressure is :
<u>Pressure = Force ÷ Area</u>
<u />
We are given that :
We also know that :
<u>Force = mass ×g</u>
<u />
So, force will be :
Now, we can finally calculate pressure :
You can automatically rule out CH₄ since it has no lone pairs at all around the central atom. Water has 2. Ammonia is the only Lewis structure that contains one lone pair.
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.