That is a lunar eclipse. At night, when the Earth is between the Sun and the moon, the moon would appear to be red. Just for future reference, a solar eclipse is when the Moon is between the Sun and Earth. Speaking of which, check out the solar eclipse this August!
Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant = 
The given balanced equilibrium reaction is,

The expression of
will be,

Now put all the values of partial pressure, we get


Therefore, the partial pressure of
is, 67.009 atm
We know that whoever she is is traveling to Antarctica or elsewhere
in the south polar region. June is the beginning of Winter there, with
zero to extremely short daylight.
But we still don't know her name.
What is the SI (metric) unit of FORCE?
with symbol ( N )
All the best !