We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
<span>The boat applying a force on the person pushing her forward.
</span>
Hope this helps!
Answer:
C)the distance decreases Shorter wavelength
Step by step Explanation:
Answer:
178.4 times
Explanation:
We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
is the masses of the 2 objects. and R is the distance between them.
From here we can calculate the ratio of gravitational force between the moon and the sun

We can divide the top and bottom by G and M





So the gravitational force of the sun is about 178 times greater than that of the moon to an object on Earth
Please elaborate more on your question so I can help you