Answer: Within each element square, information on the element's symbol, atomic number, atomic mass, electronegativity, electron configuration, and valence numbers can be found. At the bottom of the periodic table is a two row block of elements that contain the lanthanoids and actinides.
Answer:
1) Ba(OH)₂
2) The correct option is a) they conduct electricity.
Explanation:
To deduce the formula of Barium hydroxide, we have to go to the periodic table and look for the Barium (Ba), which is in group 2 and has an ionic charge of 2+. Hydroxides are not an element that is present in the periodic table is the combination of Oxygen and Hydrogen (OH), and its ionic charge is 1-.
To name this substance, we write the elements that form it, which are Ba OH, then we see the ionic charges that they have, Ba2+ OH 1- and we change these charges giving the 2+ to the OH and the 1- to the Ba. It would look Ba OH₂; we do not write the 1, and as there is a 2, the OH, has to be between brackets so that the final formula is Ba(OH)₂. What we did is balancing the charges of the elements. In other words, we need 2 OH for every Ba. Hydroxides give an electron to balance the Ba ionic charge.
Barium Hydroxide is an ionic compound because ionic compounds are formed by a metal (Ba) and a nonmetal element (OH), ionic compounds are charged, so when they are in an aqueous solution they conduct electricity because their ions move freely in the solution.
The correct answer here is C. Dew forms on the grass.
Water is a polar substance, which means it has many unique properties. One of which, is its ability to adhere and cohere to surfaces and substances. This particular question is asking about the cohesive properties of water, meaning it’s ability to stick to itself (through bonding.) The only answer choice that represents a situation where water is linking up with other molecules of water are dew drops. The water comes together using cohesion to form the drop and hen the water’s high surface tension properties meet the dew drop’s shape. The other answer choices describe alternate processes like: freezing, melting, and evaporation, respectively.
I hope this helps! :)
We are given with a compound, Zinc (Zn) having a 1.7 x 10
^23 atoms. We are tasked to solve for it's corresponding mass in g. We need to
find first the molecular weight of Zinc, that is
Zn= 65.38 g/mol
Not that 1 mol=6.022x10^{23} atoms, hence,
1.7 x 10 ^23 atoms x 1 mol/6.022x10^{23} atoms x65.38
g/ 1mol
=18.456 g of Zn
Therefore, the mass of Zinc 18.456 g
(4 mol H2O) x (112 kJ / 3 mol H2O) = 149 kJ
<span>(14.5 g HCl) / (36.4611 g HCl/mol) x (112 kJ / 3 mol HCl) = 14.9 kJ </span>
<span>(475 kJ) / (181 kJ / 2 mol HgO) x (216.5894 g HgO/mol) = 1137 g HgO </span>
<span>(179 kJ) / (181 kJ / 1 mol O2) x (31.99886 g O2/mol) = 31.6 g O2 </span>
<span>(145 kJ) / (112 kJ / 3 mol Cl2) x (70.9064 g Cl2/mol) = 275 g Cl2 </span>
<span>(14.5 g S2Cl2) / (135.0360 g S2Cl2/mol) x (112 kJ / 1 mol S2Cl2) = 12.0 kJ </span>
<span>CaCO3 + 2 NH3 → CaCN2 + 3 H2O; ∆H = –90.0 kJ </span>
<span>(798 kJ) / (90.0 kJ / 2 mol HN3) x (17.03056 g NH3/mol) = 302 g NH3 </span>
<span>(19.7 g H2O) / (18.01532 g H2O/mol) x (90.0 kJ / 3 mol H2O) = 32.8 kJ</span>