<u>Answer:</u>
<u>For a:</u> The balanced equation is 
<u>For c:</u> The balanced equation is 
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of both
and
and 3 in front of 
For the balanced chemical equation:

The given balanced equation follows:

The given equation is already balanced.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of 
For the balanced chemical equation:
The given balanced equation follows:

The given equation is already balanced.
*** 2 ***
<span>if we assume volume NaCl + volume H2O = volume H2O.. i.e.. NaCl does not effect volume </span>
<span>therefore.. the units of.. </span>
<span>.. M = moles NaCl / L solution ≈ moles NaCl / L H2O </span>
<span>.. density = grams NaCl / L solution ≈ grams NaCl / L H2O </span>
<span>again.. that is our assumption </span>
<span>so we can readily see that </span>
<span>.. M = (1 mol NaCl / ___g NaCl) x (__g NaCl / L H2O) + 0 </span>
<span>ie.. </span>
<span>.. M = (1 mol NaCl / 58.5g NaCl) x density solution + 0 </span>
<span>so.. we would expect.. </span>
<span>.. m = 0.01709 mol / g </span>
<span>.. b = 0 </span>
The balanced chemical reaction for the described reaction above is,
Na2CO3 + 2HCl ---> 2NaCl + H2CO3
From the reaction, 1 mole of Na2CO3 is needed to produce 2 moles of NaCl. In terms of mass, 106 grams of Na2CO3 are needed to produce 116.9 grams of NaCl. From this,
(23.4 g NaCl) x (106 g Na2CO3 / 116.9 NaCl = 21.22 g Na2CO3
Thus, approximately 21.22 g Na2CO3 is needed for the desired reaction.
Question:
How could you use a model to show the cause-and-effect relationship between Earth's rotation and the apparent motion of the stars across the night sky?
Answer:
Gravity? or density because of the pull from the sun.
From the given pH, we calculate the concentration of H+:
[H+] = 10^-pH = 10^-5.5
We then use the volume to solve for the number of moles of H+:
moles H+ = 10^-5.5M * 4.3x10^9 L = 13598 moles
From the balanced equation of the neutralization of hydrogen ion by limestone written as
CaCO3(s) + 2H+(aq) → Ca2+(aq) + H2CO3(aq)
we use the mole ratio of limestone CaCO3 and H+ from their coefficients, which is 1 mole of CaCO3 is to react with 2 moles of H+, to compute for the mass of the limestone:
mass CaCO3 = 13598mol H+(1mol CaCO3/2mol H+)
(100.0869g CaCO3/1mol CaCO3)(1kg/1000g)
= 680 kg