Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
AgNO₃+NaCl⇒AgCl+NaNO₃
<h3>Further explanation</h3>
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
Reaction
AB + CD⇒AD + CB
So for the option :
1. synthesis/combination reaction
2. decomposition reaction
3. double replacement reaction
4. single replacement reaction
The process that is being shown by water being given off from a bond site is DEHYDRATION SYNTHESIS.
Dehydration synthesis is the process of joining two molecules or compounds together as a result of removal of water.
Answer:
Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be beneficial to define the terms that describe the process and related properties. ... Elevation of the boiling point with an increase in external pressure, while important in cooking and sterilizing food or utensils, is less important in distillation.
Explanation: