Answer:
The reaction is endothermic.
Yes, absorbed
3.06x10¹kJ are absorbed
Explanation:
In the reaction:
2HgO(s) → 2Hg(l) + O₂(g) ΔH = 182kJ
As ΔH >0,
<em>The reaction is endothermic</em>
<em />
As the reaction is endothermic, when the reaction occurs,
<em>the heat is absorbed.</em>
<em></em>
Now, based on the equation, when 2 moles of HgO (Molar mass: 216.59g/mol), 182kJ are absorbed.
72.8g are:
72.8g * (1mol / 216.59g) = 0.3361 moles HgO.
that absorb:
0.3361 moles HgO * (182kJ / 2 moles) =
<h3>3.06x10¹kJ are absorbed</h3>
Elements of Group 1 and group 2 in the periodic
table contain elements so reactive that they are never found in the free state
<u>Explanation</u>:
The metals in group 1 of periodic table consisting of 'alkali metals' which include lithium, potassium, sodium, rubidium, Francium and caesium. They are highly reactive because they have low ionisation energy and larger radius. The group 2 metals consist of 'alkaline earth metals' which include calcium, strontium, barium, beryllium, radium and magnesium. These alkaline earth metal have +2 oxidation number, hence are highly reactive.
These both group metals are mostly reactive and so are never found in a free state. When they are exposed to air they would immediately react with oxygen. Hence, are stored in oils to avoid oxidation.
C) medium.
The medium of a wave is any substance that carries the wave, or through which the wave travels.Ocean waves are carried by water, sound waves are carried by air, and. the seismic waves of an earthquake are carried by rock and soil.
Answer:
This is because no energy is being created or destroyed in this system
Explanation:
I think this is correct? I hope it helps.
In this kind of exercises, you should use the "ideal gas" rules: PV = nRT
P should be in Pascal:
445mmHg = 59328Pa
1225mmHg = 163319Pa
V should be in cubic meter:
16L = 0.016 m3
R =

= constant

=

==> P1 * V1 = P2 * V2
V2 =

=
V2 = 0.00581 m3 = 5.81 L