Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
The molecules of ice stick together in the process of cohesion. They are tightly packed so there isn't much room to move. Liquid water is a looser hold. The molecules can go past one another, and they will take the shape of whatever container they occupy. Water vapor is loosely contained, and it will will fill whatever container it is kept in, and it will take its shape, too.
(D) The gravitational force between the astronaut and the asteroid.
Reason :
All the other forces given in the options, except (D), doesn't account for the motion of the astronaut. They are the forces that act between nucleons or atoms and neither of them accounts for an objects motion.
Answer:
-6N
Explanation:
The force to the east is acting in the positive x-direction therefore it is positive. The force to the east is in the negative x-direction therefore it is negative. The net force is just the sum of the two so 3-9=-6