Conservation tillage practices help reduce soil erosion and maintain soil nutrient levels.
<u>Explanation:</u>
The approach that helps in the reduction of doing tillage practices and also reducing its frequency. this is done for obtaining certain benefits for both environment and economic. This mainly focuses on providing sustainability by leaving some plants remaining in the soil.
It aims in decreasing the emission of gases of greenhouse effects like carbon dioxide. Using these practices helps in reducing the erosion and runoffs. This will promote health of the soil because the nutrients are not take off form the soil due to soil erosion and runoffs.
Answer:
You will reach both your arms out to break your fall and save your head.
Explanation:
It common sense you don't want your head injured. Do you?
Answer:
If I double the current in the inductor, the new total energy will become 4E (option f).
Explanation:
The coil or inductor is a passive component made of an insulated wire that stores energy in the form of a magnetic field due to its form of coiled turns of wire, through a phenomenon called self-induction. In other words, inductors store energy in the form of a magnetic field. The energy stored in the space where there is a magnetic field in the inductor is:

where E is Energy [J], L is Inductance [H] and I is Current [A].
If you double the current in the inductor, then the new value of the current is I'= 2*I. So replacing the new total energy is:

Then:

<em><u>If I double the current in the inductor, the new total energy will become 4E (option f).</u></em>
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
Answer: Exercise Physiology
Explanation: