Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
the wavelength equation is
speed (of light in this
case)= wavelength (m) x frequency
3x10^8m/s / .07m = f
frequency= 4 285 714 286
hertz
b) Total distance= 4.8 km
(4,800 m)
Speed = 3x10^8 m/s
d=st
t= d/s
t= 4,800 m/3x10^8m/s
<span>t= 1x10^-5 seconds</span>
Answer:

Explanation:
Given that
Height = h
Radius = R
From energy conservation

At point B
The minimum speed to complete the the circle

So the kinetic energy at point B




Without falling off at the top (point B)




Awnser:
Elastic Potential Energy. Elastic potential energy is Potential energy stored as a result of deformation of an elastic object,
Explanation:
Answer:
Earthworm lives in the soil, eats the soil which has organic matter such as decaying vegetation or leaves and crawls. While housefly lives in dirty places, feeds on faeces and flies.
Hope I get a brainliest answer.