Answer:
pH ≅ 4.80
Explanation:
Given that:
the volume of HN₃ = 25 mL = 0.025 L
Molarity of HN₃ = 0.150 M
number of moles of HN₃ = 0.025 × 0.150
number of moles of HN₃ = 0.00375 mol
Molarity of NaOH = 0.150 M
the volume of NaOH = 13.3 mL = 0.0133
number of moles of NaOH = 0.0133× 0.150
number of moles of NaOH = 0.001995 mol
The chemical equation for the reaction of this process can be written as:

1 mole of hydrazoic acid react with 1 mole of hydroxide to give nitride ion and water
thus the new number of moles of HN₃ = 0.00375 - 0.001995 = 0.001755 mol
Total volume used in the reaction = 0.025 + 0.0133 = 0.0383 L
Concentration of
=
= 0.0458 M
Concentration of
=
= 0.0521 M
GIven that :
Ka = 
Thus; it's pKa = 4.72




pH ≅ 4.80
The name transition metal refers to the position in the periodic table of elements. The transition elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between group 2 (2A) elements and group 13 (3A) elements.
Answer:
D - Thermodynamics
Explanation: I just took the quiz
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
<h3>What is molarity?</h3>
Molarity (M) is a unit of concentration of solutions, and it is defined as the moles of a solute per liters of a solution.
- Step 1: Calculate the liters of solution required.
A chemist has a 3.00 M KBr solution and wants to measure 0.733 moles of KBr. The required volume is:
0.733 mol × (1 L/3.00 mol) = 0.244 L
- Step 2: Convert 0.244 L to mL.
We will use the conversion factor 1 L = 1000 mL.
0.244 L × (1000 mL/1 L) = 244 mL
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
Learn more about molarity here: brainly.com/question/9118107
They mimicked the flight of birds.