Answer:
The ΔH of the reaction is + 12.45 KJ/mol
Explanation:
Mass of water= 100ml = 100g. (You should always assume 1cm3 of water as 1g)
heat capacity of water = 4.18 Jk-1 Mol-1
Change in temperature = (19.86 - 25.00) = -5.14 K (This is an endothermic reaction because of the fall in temperature)
Molar mass of NaHCO3 = 84 g/mol
Mole of NaHCO3 = 14.5 / 84 = 0.173 mol
Step 1 : Calculate the heat energy (Q) lost by the water.
Q = M x C x ΔT
Q = -100 x 4.18 x (-5.14)
Q = 2148.5 joules
Q = 2.1485 K J
Step 2: Calculating the ΔH of the reaction?
ΔH = Q / number of moles of NaHCO3
ΔH = 2.1485 / 0.173
ΔH = 12.42 KJ/mol
It is 3 moles. Don't doubt urself
The manner of death is how the death came about. A natural death occurs as a result of aging, illness, or disease. ... A homicide occurs when death is caused by another person.
Answer:
21.28 grams solute can be added if the temperature is increased to 30.0°C.
Explanation:
Solubility of solute at 20°C = 32.2 g/100 grams of water
Solute soluble in 1 gram of water = 
Mass of solute in soluble in 56.0 grams of water:

Solubility of solute at 30°C = 70.2g/100 grams of water
Solute soluble in 1 gram of water = 
Mass of solute in soluble in 56.0 grams of water:

If the temperature of saturated solution of this solute using 56.0 g of water at 20.0 °C raised to 30.0°C
Mass of solute in soluble in 56.0 grams of water 20.0°C = 18.032 g
Mass of solute in soluble in 56.0 grams of water at 30.0°C = 39.312 g
Mass of of solute added If the temperature of the saturated solution increased to 30.0°C:
39.312 g - 18.032 g = 21.28 g
21.28 grams solute can be added if the temperature is increased to 30.0°C.
Answer:
The gas cloud must be very dense.Temperatures must exceed 14 million Kelvin