Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L
The answer is force
sorry if i’m wrong
Actually, there are four kinds of reptile motion:
Concertina - vermiform. Circular muscles around the snake squeeze the front of the snake's body out long, then the latter half is pulled forward.
Rectilinear crawling - Belly scutes are moved forward individually in a wave-like motion.
Side-winding - Snake's version of "walking". Use by several species to move over fluidic substrates, such as sand.
Lateral undulation - Most common form of movement. Snake presses on alternating pressure points to force body forward (or backward)
(taken from a user on Yahoo from Correct Answers)
-70°C
Sink
little
hydrogen bonding
Explanation:
Completing the statements:
Water's boiling point would have been close to -70°C. Ice would sink in water. Water would release little heat to warm land during the winter. Ice is less dense than water because of the hydrogen bonding that forms a hexagonal structure in water.
The unique property of water is as a result of its hydrogen bonding. Water is a polar covalent compound. Like most covalent compound, water would have naturally had a very low boiling point.
The intermolecular forces all hydrogen bonding gives water its unique nature.
Hydrogen bond is formed by an attraction between hydrogen one water water molecule and more electronegative atom on another molecule usually oxygen, nitrogen and fluorine.
They form very strong intermolecular interaction responsible for the behavior of water.
The higher specific heat capacity of water is due to this bond. It absorbs a lot of heat and does not release them on time. This causes water release heat during winter.
Water has a hexagonal shape or structure linking each molecules.
learn more;
Hydrogen bonding brainly.com/question/10602513
#learnwithBrainly
I am going to go with,
0.10 g/mL
0.0700 g/mL
0.0447 g/mL
I don't know if this is the correct answer, but I am 80% sure that it may be.
:) :)