Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
A lean body mass that the cholesterol level in the body is low and that the excess fats in the body are getting rid off as much as one can. In this case, the exercises A.) cardiorespiratory fitness such as jogging and <span>C.) muscular strength and endurance such as body building, abs routines are employed. Answer is D. both A and C.</span>
A) 
The energy of an x-ray photon used for single dental x-rays is

The energy of a photon is related to its wavelength by the equation

where
is the Planck constant
is the speed of light
is the wavelength
Re-arranging the equation for the wavelength, we find

B) 
The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:

First let us assign variables,
d = distance travelled
t = time it took
v = velocity of the commercial airline
In linear physics, the equation for velocity is given as:
v = d / t
Rewriting for d:
d = v t
We know that the distance to and from south America are equal
therefore:
d1 (going) = d2 (return)
Let us say that velocity of air is v3. Since going to South
America, the wind is against the direction of the plane and the return trip is
the opposite, therefore:
(v1 - v3) t1 = (v1 + v3) t2
(v1 – v3) 4 = (v1 + v3) 3.53
4 v1 – 4 v3 = 3.53 v1 + 3.53 v3
0.47 v1 = 7.53 v3
v1 = 16.02 v3
Since we also know that:
(v1 - v3) t1 = 784
(16.02 v3 – v3) * 4 = 784
60.085 v3 = 784
v3 = 13.05 mph
Therefore the speed of the plane in still air, v1 is:
v1 = 16.02 * 13.05
<span>v1 = 209.03 mph (ANSWER)</span>
<span> </span>
Hello! :)

Use the kinematic equation below to solve for the height of the building:

Where:
d = distance, or height of the building (m)
a = acceleration due to gravity (9.8 m/s²)
t = time (seconds)
Plug in the given values into the equation:
