1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
5

1. Since sleep is so important, we might wonder why people so often fail to get a sufficient amount

Physics
1 answer:
ziro4ka [17]3 years ago
8 0

Answer: 9/10

Explanation:

because it's really important and makes you energetic

You might be interested in
Carol is farsighted ( presbyopia) and cannot see objects clearly that are closer to her eyes than about meter. She sees objects
egoroff_w [7]

Answer:

1.0 dioptres

Explanation:

Farsightedness is an eye defect in which a person can see far objects clearly but not near objects. That implies that the patients' near point is farther than 25cm which is the normal least distance of distinct vision.

Farsightedness results from the eyeball being too long or the crystalline lens not being sufficiently converging.

Carol is farsighted with a near point of about a meter (100cm). We desire to make a lens to enable her near point be reduced to about 50cm. The focal length and power of this lens is calculated in the image attached.

The power of a lens is the inverse of its focal length in meters hence the 100 in the formula for power of the lens.

7 0
3 years ago
Read 2 more answers
Q1 is located at the origin, Q2 is located at x = 2.50 cm and Q3 is located at x = 3.50 cm. Q1 has a charge of +4.92μC and Q3 ha
Inessa05 [86]

Answer:

+1.11\mu C

Explanation:

A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.

Q_1 is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to Q_2 and Q_3 at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of Q_1.

Let the electric field intensity due to Q_2 be +E_2 and that due to Q_3 be -E_3 since the charge is negative. Hence at the origin;

+E_2-E_3=0..................(1)

From equation (1) above, we obtain the following;

E_2=E_3.................(2)

From Coulomb's law the following relationship holds;

+E_2=\frac{kQ_2}{r_2^2}\\  

-E_3=\frac{kQ_3}{r_3^2}

where r_2 is the distance of Q_2 from the origin, r_3 is the distance of Q_3 from the origin and k is the electrostatic constant.

It therefore means that from equation (2) we can write the following;

\frac{kQ_2}{r_2^2}=\frac{kQ_3}{r_3^2}.................(3)

k can cancel out from both side of equation (3), so that we finally obtain the following;

\frac{Q_2}{r_2^2}=\frac{Q_3}{r_3^2}................(4)

Given;

Q_2=?\\r_2=2.5cm=0.025m\\Q_3=-2.18\mu C=-2.18* 10^{-6}C\\r_3=3.5cm=0.035m

Substituting these values into equation (4); we obtain the following;

\frac{Q_2}{0.025^2}=\frac{2.18*10^{-6}}{0.035^2}\\\\hence;\\\\Q_2=\frac{0.025^2*2.18*10^{-6}}{0.035^2}\\

Q_2=\frac{0.00136*10^{-6}}{0.00123}=1.11*10^{-6}C\\\\Q_3=+1.11\mu C

6 0
3 years ago
A scientist designed a foam container to help keep frozen foods from melting. Which best explains how the foam works?
FrozenT [24]
I think the answer should be D.<span>It reduces the amount of thermal energy that is transferred from outside to inside the container. </span>
6 0
4 years ago
Read 2 more answers
The sun continuously radiates energy into space in all directions. Some of the sun's energy is intercepted by the Earth. The ave
8_murik_8 [283]

B. The Earth radiates an amount of energy into space equal to the amount it receives.

Part of the solar energy is reflected by the Earth into space, this is known as albedo. The other part of the energy radiated by the Earth in the form of infrared radiation, is absorbed by the greenhouse gases, which cause most of this infrared radiation to be emitted into space. Therefore, the net flow of energy is zero.

7 0
3 years ago
A. What are the three longest wavelengths for standing waves on a 240-cm-long string that is fixed at both ends?
vovangra [49]

Answer:

a) the three longest wavelengths = 4.8m, 2.4m, 1.6m

b) what is the frequency of the third-longest wavelength = 75Hz

Explanation:

The steps and appropriate formula and substitution is as shown in the attached file.

5 0
3 years ago
Other questions:
  • How large an expansion gap should be left between steel railroad rails if they may reach a maximum temperature 36.0°C greater th
    15·1 answer
  • You are on a hike in the mountains. You have 3.79 km left to go before your next campsite. The sun will set in 6.93 h. What aver
    6·1 answer
  • How can pollution affect an ecosystem? Provide specific examples from the video.
    11·1 answer
  • Calculate the power developed in a 6.0o resistor with a potential drop of 12 volts.
    6·2 answers
  • a force of 20 N acted on a ball thereby imparting an impulse of 70 Ns to the ball. For how long did the force act on the ball?
    10·1 answer
  • 11. Consider the velocity vs time graph below. Which object is not moving at time = 0?
    5·1 answer
  • If 1 kg of each substance in the table changes temperature by 15°C, which
    9·2 answers
  • Determine the ratio of the flow rate through capillary tubes A and B (that is, Qa/Qb).
    8·1 answer
  • 7. What does the changing colour perceived by the person as the filter changes indicate to you
    12·1 answer
  • Tina just threw a 0.15 kg ball straight up in the air. If the ball reaches
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!