1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
3 years ago
5

Suppose that a wireless link layer using a CSMA-like protocol backs off 1ms on average. A packet’s link and physical layer heade

rs are always set at the same bitrate and take a total of 125us to transmit. If a packet is sent with a link layer payload of 1000 bytes at a bitrate of 1Mbps, what overhead do the physical and link layers introduce? Calculate overhead as the fraction of the complete packet time taken up by backoff and link/physical layer headers.
Engineering
1 answer:
Liula [17]3 years ago
5 0
Tell me why i got this question got it right and now won’t remember but i’ll get back at you when i remember
You might be interested in
Infinitivo de vivia kkk xd
blagie [28]

Answer:

pls put a question not random letters

Explanation:

8 0
3 years ago
What is the minimum efficiency of a functioning current-model catalytic converter? a. 60% b. 75% c. 80% d. 90%
slamgirl [31]

Answer:

d. 90%

Explanation:

As we know that internal combustion engine produce lot's of toxic gases to reduce these toxic gases in the environment a device is used and this device is know as current modeling converter.

Generally the efficiency of current model catalytic converter is more than 90%.But the minimum efficiency this converter is 90%.

So option d is correct.

d. 90%

7 0
3 years ago
Please help i am give brainliest i really need help guys no links please ???
devlian [24]

Explanation:

The wind is an actual form of solar energy. winds are caused by the heating of the atmosphere by the sun, the rotation of the earth, and the earth's surface irregularities. The wind is capture in a wind turbine which provides a renewable energy source, the wind makes the rotor spin, as the rotor spins the movement of the blades drives a generator that creates energy, also known as wind power. The average wind efficiency of turbines is between 35-45%.

Advantages of wind power

- Wind power is cost-effective

- wind creates jobs

- wind enables US industry growth and US competitiveness

-it's a clean fuel source

   

4 0
3 years ago
12.50 An air conditioner operating at steady state takes in moist air at 28°C, 1 bar, and 70% relative humidity. The moist air f
Mandarinka [93]

Answer:

Hey smith please see attachments for answer:

Please rate me good.

The attachments will provide you a detailed answer

Explanation:

8 0
3 years ago
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Mobo, a wireless phone carrier, completed its first year of operations on October 31. All of the year's entries have been record
    5·1 answer
  • According to Manor, the example of the subway train in New York City is an example of which type of uniqueness?
    9·1 answer
  • Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs at TH=600 K and TC=3
    13·1 answer
  • A spherical seed of 1 cm diameter is buried at a depth of 1 cm inside soil (thermal conductivity of 1 Wm-1K-1) in a sufficiently
    14·1 answer
  • Dalton needs to prepare a close-out report for his project. Which part of the close-out report would describe
    6·1 answer
  • What did August Comte contribute to sociology including positivism
    11·1 answer
  • Which battery produces more volts per cell, maintenance type or maintenance free ?
    6·1 answer
  • Which of the following is an essential component of reinforced concrete?
    9·1 answer
  • All of these are true about using adhesive EXCEPT:
    6·1 answer
  • Not all projects that engineers work on will have human factors involved.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!