1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
3 years ago
11

What is another word for cycles per second??

Physics
1 answer:
Hatshy [7]3 years ago
5 0
Frequensey or hertz, I looked this up on the internet!
You might be interested in
WORTH 50 POINTSSSS!!!!!!!! don't lie either if you do I will report your answer and get my points back idc !!!!!!
BARSIC [14]

Answer:

b

Explanation:

3 0
3 years ago
Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.8 kg and contains
OLEGan [10]

Answer:

C = 771.35 J/kg°C

Explanation:

Here, e consider the conservation of energy equation. The conservation of energy principle states that:

Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container

Since,

Heat Given or Absorbed by a material = m C ΔT

Therefore,

m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃

where,

m₁ = Mass of Metal Piece = 2.3 kg

C = Specific Heat of Metal = ?

ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C

m₂ = Mass of Metal Container = 3.8 kg

ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C

m₃ = Mass of Water = 20 kg

C₃ = Specific Heat of Water = 4200 J/kg°C

ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C

Therefore,

(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)

C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J

C = 252000 J/326.7 kg°C

<u>C = 771.35 J/kg°C</u>

5 0
3 years ago
A frictionless spring with a 3-kg mass can be held stretched 0.8 meters beyond its natural length by a force of 40 newtons. If t
Free_Kalibri [48]

Answer:

Explanation:

mass m = 3 kg

spring constant be k

k x .8 = 40 N

k = 40 / .8 = 50 N /m

angular frequency ω = √ ( k / m )

= √ ( 50 / 3 )

= 4.08 rad /s

Let amplitude of oscillation be A .

1/2 k A² = 1/2 m v²

50 A² = 3 x 1²

A = .245 m = 24.5 cm

For displacement , the equation of SHM is

x = A sinωt

= 24.5 sin4.08 t

x = 24.5 sin4.08 t

Here, angle 4.08 t is in radians .

3 0
3 years ago
An electron with speed 2.45 x 10^7 m/s is traveling parallel to a uniform electric field of magnitude 1.18 x 10^4N/C . How much
cupoosta [38]

Answer:

time will elapse before it return to  its staring point is 23.6 ns

Explanation:

given data

speed u = 2.45 × 10^{7} m/s

uniform electric field E = 1.18 × 10^{4} N/C

to find out

How much time will elapse before it returns to its starting point

solution

we find acceleration first by electrostatic force that is

F = Eq

here

F = ma by newton law

so

ma = Eq

here m is mass , a is acceleration and E is uniform electric field and q is charge of electron

so

put here all value

9.11 × 10^{-31} kg ×a = 1.18 × 10^{4} × 1.602 × 10^{-19}

a = 20.75 × 10^{14} m/s²

so acceleration is 20.75 × 10^{14} m/s²

and

time required by electron before come rest is

use equation of motion

v = u + at

here v is zero and u is speed given and t is time so put all value

2.45 × 10^{7} = 0 + 20.75 × 10^{14} (t)

t = 11.80 × 10^{-9} s

so time will elapse before it return to  its staring point is

time = 2t

time = 2 ×11.80 × 10^{-9}

time is 23.6 × 10^{-9} s

time will elapse before it return to  its staring point is 23.6 ns

7 0
3 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
3 years ago
Other questions:
  • Suppose that the distance an aircraft travels along a runway before takeoff is given by Upper D equals (5 divided by 3 )t square
    10·1 answer
  • Which of the following is trueregarding the properties of light? 
    6·2 answers
  • Can anyone explain how to do this to me? It is due tomorrow at 9:30am. Thanks.
    8·1 answer
  • Galileo's contribution to the study of motion
    9·1 answer
  • How many photons with 10 ev are required to produce 20 joules of energy?
    11·1 answer
  • A helium-neon laser (λ = 633 nm) illuminates a single slit and is observed on a screen 1.50 m behind the slit. The distance betw
    11·1 answer
  • An object carrying a force of 15N has a mass of 3kg. What is the<br> acceleration of this object?
    11·1 answer
  • What is the acceleration of a baseball when it is moving downward after being tossed directly upward?
    10·1 answer
  • Vector A has a magnitude of 25 units and points in the positive y-direction. When vector B is added to A, the resultant vector A
    14·1 answer
  • How is it possible for the same object to have different amounts of gravitational potential energy?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!