Answer:
Approximately .
Approximately . (assumption: the LED here is an Ohmic resistor.)
Explanation:
The two resistors here and are connected in parallel. Their effective resistance would be equal to
.
The current in a serial circuit is supposed to be the same everywhere. In this case, the current through the LED should be . That should also be the current through the effective resistor. Make sure all values are in standard units. The voltage drop across that resistor would be
.
The voltage drop across the entire circuit would equal to
- the voltage drop across the resistors, plus
- the voltage drop across the LED.
In this case, that value would be equal to . That's the voltage that needs to be supplied to the circuit to achieve a current of through the LED.
Assuming that the LED is an Ohmic resistor. In other words, assume that its resistance is the same for all currents. Calculate its resistance:
.
The resistance of a serial circuit is equal to the resistance of its parts. In this case,
.
Again, the current in a serial circuit is the same in all appliances.
.
Three units deformations observed in these bands.
<h3>What forces do a rubber band encounter?</h3>
Elastic force is the force that permits some materials to regain their former shape after being stretched or crushed. Thus, a stretched rubber band is subject to an elastic force.
The rubber band experiment uses a straightforward rubber band to show entropic force and a refrigeration cycle. The rubber band experiment involves stretching and then releasing a rubber band while measuring its temperature.
Always acting in the opposite direction of motion is friction. This indicates that if friction is there, it cancels out some of the force driving the motion (if the object is being accelerated). This results in a decreased acceleration and a smaller net force.
learn more about Elastic force refer
brainly.com/question/5055063
#SPJ14
Answer: Heating a gas increases the kinetic energy of the particles, which causes the gas to expand. But, I order to keep the pressure constant, the volume of the container must be increased when the gas is heated.
Answer:
20.94 m/s
Explanation:
Recall that average velocity is defined as:
V = distance / time
Then, for our case:
V = 754 m / 36 sec = 20.94 m/s
Types of Gas? I'm not exactly sure what you're asking