I agree with Maria and disagree with Mike.
The earth has gravity and that pulls objects towards the center of the planet
Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.
Pitch is the sensation of certain frequencies to the ear. High frequency = high pitch, low frequency = low pitch.
f = c(speed of the wave) / <span>λ (wavelength)
1. 343m/s / 0.77955m = 439.99 Hz
This corresponds to pitch A
2. 343m/s / 0.52028m = 659.26 Hz
</span> This corresponds to pitch E
<span>
3. 343m/s / 0.65552m = 523.349 Hz
</span>This corresponds to pitch C
4. using f = c / λ
λ = c / f<span>
= 343m/s / 587.33 = 0.583999 m = 0.584 m
</span>
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4