Answer:

Explanation:
The pump is modelled after applying Principle of Energy Conservation, whose form is:

The head associated with the pump is cleared:

Inlet and outlet velocities are found:




Now, the head associated with the pump is finally computed:


The power that pump adds to the fluid is:



Answer:
2.455 W
Explanation:
The power dissipated in each branch is ...
P = V^2/R
So, the branch powers are ...
branch 1: 18^2/220 ≈ 1.473 W
branch 2: 18^2/330 ≈ 0.982 W
Total power is ...
1.473 W + 0.982 W = 2.455 W
The design speed was used for the freeway exit ramp is 11 mph.
<h3>Design speed used in the exit ramp</h3>
The design speed used in the exit ramp is calculated as follows;
f = v²/15R - 0.01e
where;
v = ωr
v = (θ/t) r
θ = 90⁰ = 1.57 rad
v = (1.57 x 19.4)/2.5 s
v = 12.18 ft/s = 8.3 mph
<h3>Design speed</h3>
f = v²/15R - 0.01e
let the maximum superelevation, e = 1%
f = (8.3)²/(15 x 19.4) - 0.01
f = 0.22
0.22 is less than value of f which is 0.4
<h3>next iteration, try 10 mph</h3>
f = (10)²/(15 x 19.4) - 0.01
f = 0.33
0.33 is less than 0.4
<h3>next iteration, try 11 mph</h3>
f = (11)²/(15 x 19.4) - 0.01
f = 0.4
Thus, the design speed was used for the freeway exit ramp is 11 mph.
Learn more about design speed here: brainly.com/question/22279858
#SPJ1