Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.
Explanation:
The reaction equation will be as follows.

Hence, the expression for
is as follows.
![K_{a} = \frac{[H_{2}SO^{-}_{4}][H^{+}]}{[H_{3}AsO_{4}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH_%7B2%7DSO%5E%7B-%7D_%7B4%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BH_%7B3%7DAsO_%7B4%7D%5D%7D)
Let us assume that the concentration of both
and
is x.

x = 0.01118034
This means that the concentration of
is 0.01118034.
Since, we know that the relation between pH and concentration of hydrogen ions is as follows.
pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
= 
= 1.958
Thus, we can conclude that the pH of a 0.500 M solution of arsenic acid is 1.958.
Gasoline contains C and H atoms. During combustion, the carbon (C) from the fuel combines with oxygen (O2) from the air to produce carbon dioxide (CO2).
2 C8H18 + 25 O2 → 16 CO2 + 18 H2O.
Combustion reactions release large amounts of heat. They have negative enthalpy. A negative enthalpy represents an exothermic reaction, releasing heat. This reaction is spontaneous and exothermic, since we can obtain energy from the reaction; the ΔG (free energy) is negative (So 1 is true).
ΔG < 0, so the free energy of the system decreases with the reaction. Remember that when there is a negative ΔG the reaction goes from higher free energy to lower free energy, like in this case.
The initial two columns of the periodic table make the s-square, and the components in this square share practically speaking that they have a tendency to lose electrons to pick up soundness.