Formic acid is the simplest carboxylic acid with a structure of HCOOH and has a pka of 3.75. The pka refers to the acidity of the molecule, which in this example refers to the molecules ability to give up the proton of the O-H. A decrease in the pka value corresponds to an increase in acidity, or an increase in the ability to give up a proton. When an acid gives up a proton, the remaining anionic species (in this case HCOO-) is called the conjugate base, and an increase in the stability of the conjugate base corresponds to an increase in acidity.
The pka of a carboxylic can be affected greatly by the presence of various functional groups within its structure. An example of an inductive effect changing the pka can be shown with trichloroacetic acid, Cl3CCOOH. This molecule has a pka of 0.7. The decrease in pka relative to formic acid is due to the presence of the Cl3C- group, and more specifically the presence of the chlorine atoms. The electronegative chlorine atoms are able to withdraw the electron density away from the oxygen atoms and towards themselves, thus helping to stabilize the negative charge and stabilize the conjugate base. This results in an increase in acidity and decrease in pka.
The same Cl3CCOOH example can be used to explain how dipoles can effect the acidity of carboxylic acids. Compared to standard acetic acid, H3CCOOH with a pka of 4.76, trichloroacetic acid is much more acidic. The difference between these structures is the presence of C-Cl bonds in place of C-H bonds. A C-Cl bond is much more polar than a C-H bond, due the large electronegativity of the chlorine atom. This results in a carbon with a partial positive charge and a chlorine with a partial negative charge. In the conjugate base of the acid, where the molecule has a negative charge localized on the oxygen atoms, the dipole moment of the C-Cl bond is oriented such that the partial positive charge is on the carbon that is adjacent to the oxygen atoms containing the negative charge. Therefore, the electrostatic attraction between the positive end of the C-Cl dipole and the negative charge of the anionic oxygen helps to stabilize the entire species. This level of stabilization is not present in acetic acid where there are C-H bonds instead of C-Cl bonds since the C-H bonds do not have a large dipole moment.
To understand how resonance can affect the pka of a species, we can simply compare the pka of a simple alcohol such as methanol, CH3OH, and formic acid, HCOOH. The pka of methanol is 16, suggesting that is is a very weak acid. Once methanol gives up that proton to become the conjugate base CH3O-, the charge cannot be stabilized in any way and is simply localized on the oxygen atom. However, with a carboxylic acid, the conjugate base, HCOO-, can stabilize the negative charge. The lone pair electrons containing the charge on the oxygen atom are able to migrate to the other oxygen atom of the carboxylic acid. The negative charge can now be shared between the two electronegative oxygen atoms, thus stabilizing the charge and decreasing the pka.
Ultraviolet Rays ( UV rays) can harm humans because they can cause sunburn, and skin cance if you stay out in the sun for too long.
Answer: 2 (2 neutrons are produced).
Explanation:
1) In the left side of the transmutation equationa appears:
²³⁵U + ¹n →
I am omitting the atomic number (subscript to the leff) because the question does not show them as it is focused on number of neutrons.
2) The right side of the transmutation equation has:
→ ¹⁴⁴Ce + ⁹⁰Sr + ?
3) The total mass number of the left side is 235 + 1 = 236
4) The total mass number of Ce and Sr on the right side is 144 + 90 = 234
5) Then, you are lacking 236 - 234 = 2 unit masses on the right side which are the 2 neutrons that are produced along with the Ce and Sr.
The complete final equation is:
²³⁵U + ¹n → ¹⁴⁴Ce + ⁹⁰Sr + 2 ¹n
Where you have the two neutrons produced.
Answer:
There are 2 hydrogen atoms, one magnesium atom, and 5 atoms in total.
Explanation:
We are given a compound in formula form. To make things easier to understand, we can first convert this to the name of the compound.
- When a compound contains one or more elements in parentheses, these are usually a <u>polyatomic ion</u>.
- Polyatomic ions are ions made up of two or more elements with a positive or negative charge over the entire ion. Commons examples of these NH₄⁺ (ammonia) and HCO₃⁻ (bicarbonate).
- You can combine metals with polyatomic ions to create commonly known compounds, such as baking soda. The chemical name for baking soda is sodium bicarbonate, so we can combine Na (sodium) with HCO₃⁻ (bicarbonate) and create sodium bicarbonate: NaHCO₃.
This compound is one magnesium atom bonded to two hydroxide ions.
- Hydroxide is the compound between one hydrogen atom and one oxygen atom. The compound overall adopts a negative charge of 1.
- If we have one hydrogen atom and one oxygen atom, the most electronegative atom is written first in chemical formulas. Therefore, the symbol for Oxygen (O) goes first.
- Then, write in the hydrogen atom directly after the O symbol: OH.
- Finally, since we have a negative charge on the ion, we need to play a negative sign as a superscript for the compound. Therefore, this becomes OH⁻.
Now, we need to determine the charge on the Magnesium atom which is determined from the amount of valence electrons the atom has.
- On a periodic table, the symbol for Magnesium is Mg and this element has 2 valence electrons.
- In order to fulfill the Octet Rule, the It is more likely to give up 2 electrons to a nonmetal than it is to gain 6, so we can safely assume that the charge is ²⁺.
- We need to use the criss-cross technique to transfer the charges between the element and the ion, so the negative 1 charge goes to the Mg, which does not appear (negative 1 or positive 1 are implied) and since the magnesium has a charge of positive 2, this is the subscript for the hydroxide ion.
- Therefore, our compound becomes Mg(OH)₂, and we have labeled this as magnesium hydroxide.
Now, to the number of atoms:
- The new charge on Mg is 1-, so there is only one atom of Mg.
- The charge is 2+ on the OH ion, so there are two atoms of H and two atoms of O.
- Two atoms of oxygen, two atoms of hydrogen, and one atom of magnesium add up to be five atoms in total.