Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Explanation:
Internal energy = heat + work
U = Q + W
Since there's no change in volume (rigid walls), W = 0.
U = Q
U = n Cᵥ ΔT
U = (4.0 mol) (2.5 × 8.314 J/mol/K) (354 C − 17 C)
U = 28,000 J
Answer:
Tangential speed or Rotational speed
Answer:
Option C) 2,090 J/(mol K)
Explanation:
Data:
Volume in the beaker = 429 ml
temperature = 20° C
Density = 789 kg/m³
Equilibrium reading = 429
volume change = 29 ml
= 0.029 L
Energy change = mcΔT
U + PΔV
Answer:
The net gravitational force on the mass is 
Explanation:
We have by Newton's law of gravity the force of attraction between masses 

Applying vales we get
Force of attraction between 135 kg mass and 38 kg mass is

Force of attraction between 435 kg mass and 38 kg mass is

Thus the net force on mass 38.0 kg is 