Answer:
Energy loss per minute will be 
Explanation:
We have given the star produces power of 
We know that 1 W = 1 J/sec
So 
Given time = 1 minute = 60 sec
So the energy loss per minute 
We multiply with 60 we have to calculate energy loss per minute
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Answer:
a parachute falling to the ground is uniform
The ability to sustain life
(ie water, shelter, food, basic needs)
Hope this helped!
:-)
Answer:
the pressure at the depth is 1.08 ×
Pa
Explanation:
The pressure at the depth is given by,
P = h
g
Where, P = pressure at the depth
h = depth of the Pacific Ocean in the Mariana Trench = 36,198 ft = 11033.15 meter
= density of water = 1000 
g = acceleration due to gravity ≈ 9.8 
P = 11033.15 × 9.8 × 1000
P = 1.08 ×
Pa
Thus, the pressure at the depth is 1.08 ×
Pa