Answer:
Explanation:
kinetic energy = 14.1 MJ = 14.1 x 10⁶ J
Let radius of flywheel be r .
volume of flywheel = π r² x t where t is thickness
= 3.14 x r² x .113 m³
= .04 r² m³
mass = volume x density
= .04 r² x 7800 = 312.73 r²kg
moment of inertia I = 1 / 2 mass x radius²
= .5 x 312.73 r² x r²
= 156.37 r⁴ kg m²
angular velocity ω = 2π x 93/60
= 9.734 rad /s
kinetic energy = 1/2 Iω² where ω is angular velocity
= .5 x 156.37 r⁴ x 9.734²
= 7408.08 r⁴
Given
7408.08 r⁴ = 14.1 x 10⁶
r⁴ = .19 x 10⁴
r = .66 x 10
= 6.60 m .
Diameter = 13.2 m
b )
centripetal acceleration of a point on its rim = ω² r
= 9.734² x 6.6
= 625.35 m /s²
Answer:
electric flux through the three side = 2.35 N m²/C
Explanation:
given,
equilateral triangle of base = 25 cm
electric field strength = 260 N/C
Area of triangle = 
= 
= 0.0271 m³
electric flux = E. A
= 260 × 0.0271
= 7.046 N m²/C
since, tetrahedron does not enclose any charge so, net flux through tetrahedron is zero.
electric flux through the three side = (electric flux through base)/3
= 
electric flux through the three side = 2.35 N m²/C
Answer:
A 'kink' in the glass tube which breaks the mercury as it contracts, storing the highest temperature reading. The glass tube is shaped like a lens to magnify the thin mercury thread. Shaking the thermometer resets the mercury back into the bulb.
The correct answer for the question is Chordophone
Chordophone is an instrument in which a stretched, vibrating string produces the initial sound. Strings instruments produce sound through the vibration of strings. The length, tightedness, and thickness determines the sound produced by the strings.
Answer:
160 m
Explanation:
The intensity, I, of the sound is inversely proportional to the square of the distance, r, from the source.

Hence,


From the question,
is half of 


