Answer:
I'm not sure if I know whatever the answer is
The average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.
The correct answer is option D.
In the given graph, we can deduce the following;
- the total time of the motion, = 1 mins + 45 s = 60 s + 45 s = 105 s
The average speed of the ant is calculated as;

The total distance from the graph is calculated as follows;
- first horizontal distance from 2 cm to 8 cm = 8 - 2 = 6 cm
- first upward distance from 3 cm to 5 cm = 5 - 3 = 2 cm
- second horizontal distance from 8 cm to 6 cm = 8 - 6 = 2 cm
- second upward distance from 5 cm to 12 cm = 12 - 5 = 7 cm
- third horizontal distance from 6 cm to 13 cm = 13 - 6 = 7 cm
- fourth downward distance from 12 cm to 9 cm = 3 cm
- final horizontal distance from 13 cm to 15 cm = 2cm
The total distance = (6 + 2 + 2 + 7 + 7 + 3 + 2) cm = 29 cm

The average velocity is calculated as the change in displacement per change in time.
The displacement is the shortest distance between the start and end positions.
- This shortest distance is the straight line connecting the start and end position. Call this line P
- From the end position at x = 15 cm, draw a vertical line from y = 9 cm, to y = 3 cm. The displacement = 9 cm - 3 cm = 6 cm
- Also, draw a horizontal line from start at x = 2 cm to x = 15 cm. The displacement = 15 cm - 2 cm = 13 cm
Notice, you have a right triangle, now calculate the length of line P.
↓end
↓
↓ 6cm
↓
start -------------13 cm------------
Use Pythagoras theorem to solve for P.

The average velocity of the ant is calculated as;

Thus, the average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.
Learn more here: brainly.com/question/589950
This question is based on the fundamental assumption of vector direction.
A vector is a physical quantity which has magnitude as well direction for its complete specification.
The magnitude of a physical quantity is simply a numerical number .Hence it can not be negative.
A negative vector is a vector which comes into existence when it is opposite to our assumed direction with respect to any other vector. For instance, the vector is taken positive if it is along + X axis and negative if it is along - X axis.
As per the first option it is given that a vector is negative if its magnitude is greater than 1. It is not correct as magnitude play no role in it.
The second option tells that the magnitude of the vector is less than 1. Magnitude can not be negative. So this is also wrong.
Third one tells that a vector is negative if its displacement is along north. It does not give any detail information about the negativity of a vector.
In a general sense we assume that vertically downward motion is negative and vertically upward is positive. In case of a falling object the motion is vertically downward. So the velocity of that object is negative .
So last option is partially correct as the vector can be negative depending on our choice of co-ordinate system.
I'm guessing that this is a problem to find the weight of a 90kg mass on a planet where the acceleration of gravity is 4 m/s^2. (Much less gravity than Earth, a little more than Mars.)
Just do the multiplication, and you get
360 Newtons.
Answer: N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
Explanation:
See attached for a sketch.
From the attachment.
.
N = normal reaction force on block
W = weight of the block
theta = angle of the inclined plane to the horizontal
From the sketch, we can see that
N is equal in magnitude but opposite direction to Wy
N = Wy
And
Wy = Wcos(theta)
Wx = Wsin(theta)
Then,
N = Wy = Wcos(theta)
But W = mass × acceleration due to gravity = mg
N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)