Answer:
-15 Ns
Explanation:
= Mass of first object = 2 kg
= Mass of second object = 3 kg
= Initial Velocity of first object = 9 m/s
= Initial Velocity of second object = -3 m/s
= Final Velocity of first object = 1.5 m/s
= Final Velocity of second object = 2 m/s
Change in linear momentum is given by

Change in linear momentum of the first object is -15 Ns
Answer:
The fossil record tells the story of the past and shows the evolution of forms over millions of years
Explanation:
Answer:
Explanation:
Plotting the original location of the helicopter before it flies 25 km north, it would be at the origin, (0,0) then after it flies north, the y vertex gains 25 points, so it would be (0,25)
After it flies east, the x coordinate gains 5 points, so it would now be (5,25)
After it flies south, the y coordinate loses or is subtracted by 5 points. so it would now be (5,20)
After flying west, the x coordinate loses 15 points. So the final vertex would be at (-10,20)
East = Right
West = Left
South= Down
North = Up
I used mainly mathematical methods by adding and subtracting the x and y coordinate values, but this could be graphed easily since I gave the coordinates just incase!
Hope this helps!
Answer:
Explanation:
Given the following data;
Velocity = 51 m/s
Mass = 7,692 kg
To find the momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Substituting into the equation, we have;
Momentum = 7692 × 51
Momentum = 392292 Kgm/s
Answer:
6.14
Explanation:
If the pH falls as temperature increases, this does not mean that water becomes more acidic at higher temperatures. A solution is acidic if there is an excess of hydrogen ions over hydroxide ions (i.e., pH < pOH). In the case of pure water, there are always the same concentration of hydrogen ions and hydroxide ions and hence, the water is still neutral (pH = pOH) - even if its pH changes.
The problem is that we are all familiar with 7 being the pH of pure water, that anything else feels really strange. Remember that to calculate the neutral value of pH from Kw . If that changes, then the neutral value for pH changes as well. At 100°C, the pH of pure water is 6.14, which is "neutral" on the pH scale at this higher temperature. A solution with a pH of 7 at this temperature is slightly alkaline because its pH is a bit higher than the neutral value of 6.14.