Answer:
−153.1 J / (K mol)
Explanation:
Calculate the standard entropy of reaction at 298 K for the reaction Hg(liq) + Cl2(g) → HgCl2(s) The standard molar entropies of the species at that temperature are: Sºm (Hg,liq) = 76.02 J / (K mol) ; Sºm (Cl2,g) = 223.07 J / (K mol) ; Sºm (HgCl2,s) = 146.0 J / (K mol)
Hg(liq) + Cl2(g) → HgCl2(s)
Given that;
The standard molar entropies of the species at that temperature are:
Sºm (Hg,liq) = 76.02 J / (K mol) ;
Sºm (Cl2,g) = 223.07 J / (K mol) ;
Sºm (HgCl2,s) = 146.0 J / (K mol)
The standard molar entropies of reaction = Sºm[products] - Sºm [ reactants]
= 146.0 J / (K mol) – [76.02 J / (K mol) +223.07 J / (K mol) ]
= -153.09 J / (K mol)
= or -153.1 J / (K mol)
Hence the answer is −153.1 J / (K mol)
Answer:
Mitosis is an intersting process where a single cell divides into two identical daughter cells. During mitosis one cell divides once to form two identical cells. The major purpose of mitosis is for growth and to replace worn out and dysfunctional cells.
Explanation:
When mechanical and chemical weathering breaks up materials on the Earth's surface, erosion can move them to new locations. For example, wind, water or ice can create a valley by removing material. ... When layers of eroded material pile up, it's called deposition. This can create new landforms.
Answer:
1610.7 g is the weigh for 4.64×10²⁴ atoms of Bi
Explanation:
Let's do the required conversions:
1 mol of atoms has 6.02×10²³ atoms
Bi → 1 mol of bismuth weighs 208.98 grams
Let's do the rules of three:
6.02×10²³ atoms are the amount of 1 mol of Bi
4.64×10²⁴ atoms are contained in (4.64×10²⁴ . 1) /6.02×10²³ = 7.71 moles
1 mol of Bi weighs 208.98 g
7.71 moles of Bi must weigh (7.71 . 208.98 ) /1 = 1610.7 g
This is not the proper equation, the equation should be:
Cl2 + H2 ----> 2HCl
This does not happen at room temperature and needs a source of activation energy such a spark.