Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M
Answer:
a.the smallest building blocks of matter
Explanation:
because atoms are the smallest building blocks of matter.
All animals can be dangerous and they would fight for their family. (This might be wrong)
Explanation:
When OH- (as in potassium hydroxide) is added, it reacts with the acid (HOCl) to reduce the amount of HOCl and increase the concentration of sodium hypochlorite.
Potassium hydroxide will react with the hypochlorous acid to produce hypochlorite ions. In the process, some of the weak acid will be consumed, along with the added strong base.
This occurs as follows:
HClO(aq) + KOH(aq) → KClO(aq) + H2O(l)
since water is formed, this maintains the pH. Thus ...
A. The number of moles of HClO will decrease. - TRUE
B. The number of moles of ClO- will increase. - TRUE
C. The equilibrium concentration of H3O+ will remain the same. - TRUE
D. The pH will decrease. - FALSE
E. The ratio of [HClO] / [ClO-] will decrease. -TRUE. It will decrease as HClO goes down and ClO- goes up.
I think its the first 1 C i remember answering this question on my school work