When an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
The energy of the electron drops when it transitions levels, as well as the atom releases photons. The emission of the photon occurs as the electron transitions from an energy state to a lower state. The photon energy represents precisely the energy that would be lost when an electron moves to a level with less energy.
When such an excited electron transitions from one energy level to another, this could emit a photon. The energy drop would be equivalent to the power of the photon that is released. In electron volts, the energy of an electron, as well as its associated photon (emitted or absorbed) has been stated.
Therefore, when an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
To know more about electron
brainly.com/question/1255220
#SPJ4
<u />
<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>
Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
Answer:
3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate.
Explanation:

The balance chemical equation is :

Mass of barium hydroxide octahydrate = 6.5 g
Moles of barium hydroxide octahydrate = 
According to reaction, 2 moles of ammonium thiocyanate reacts with1 mole of barium hydroxide octahydrate. The 0.020635 moles of barium hydroxide octahydrate will react with:

Mass of 0.04127 moles of ammonium thiocyanate;

3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate
Answer:
The Answer is 'D'
Explanation:
The diagram on the down side shows the behavior of the particles of a liquid so I suppose it is the ocean. While the top diagram shows the behavior of the particles of a gas so I am sure it's the air. Therefore I chose the last diagram because it describes exactly how you wanted in the question, which is the Ocean's water evaporating to become gas or the 'air' as we say
<em>Thank</em><em> </em><em>you</em><em> </em><em>and</em><em> </em><em>I</em><em> </em><em>hope</em><em> </em><em>you</em><em> </em><em>like this</em><em> </em><em>answer</em><em>! </em>