When the temperature increases, the intermolecular forces between the molecules of a liquid become weaker, and some bonds break easily. Thus as temperature increases, the surface tension of a liquid decreases.
Answer:
0.0021576N
Explanation:
F=(k)(q1q2/r^2)
F=(8.99×10^9)(3×10^-6)(2×10^-6)/(5^2)
F=0.0021576N
Answer:
24.531 m
Explanation:
t = Time taken = 1.7 s
u = Initial velocity = 6.1 m/s
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The initial height of the rock above the ground is 24.531 m
To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

Here,
= Angle between areal vector and magnetic field direction.
According to Faraday's law, induced emf in the loop is,





At time
, Induced emf is,


Therefore the magnitude of the induced emf is 10.9V