Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:
Explanation:
Let the linear charge density of the charged wire is given as
here we can use Gauss law to find the electric field at a distance r from wire
so here we will assume a Gaussian surface of cylinder shape around the wire
so we have
here we have
so we have
Answer:
Because as the waves propagates, the particles of the medium (molecules of water) vibrates perpendicularly (upward and downward) about their mean position and not in the direction of the waves.
Explanation:
A wave is a phenomena which causes a disturbance in a medium without any permanent deformation to the medium. Examples are; transverse wave and longitudinal wave. Waves transfer energy from one point in the medium to another.
The waves generated by water are transverse waves. Which are waves in which the vibrations of the particles of the medium is perpendicular to the direction of propagation of the waves.
Thus as the waves propagates, the molecules of water vibrates up and down and not along the direction of propagation of the waves. So that the floating objects do not get pushed in the direction of the waves every time.
Answer:
Explanation:
Given
Mass
Net Force is equivalent to
with tension T in the string
For mass
For cylinder
I for solid cylinder is
thus
Substitute the value of T we get