Answer:
537.68 torr.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁).</em>
P₁ = 485 torr, T₁ = 40°C + 273 = 313 K,
P₂ = ??? torr, T₂ = 74°C + 273 = 347 K.
∴ P₂ = (P₁T₂)/(P₁) = (485 torr)(347 K)/(313 K) = 537.68 torr.
Answer:
2.04 x 10²⁴ molecules
Explanation:
Given parameters:
Mass of Be(OH)₂ = 145.5g
To calculate the number of molecules in this mass of Be(OH)₂ we follow the following steps:
>> Calculate the number of moles first using the formula below:
Number of moles = mass/molarmass
Since we have been given the mass, let us derive the molar mass of Be(OH)₂
Atomic mass of Be = 9g
O = 16g
H = 1g
Molar Mass = 9 + 2(16 + 1)
= 9 + 34
= 43g/mol
Number of moles = 145.5/43 = 3.38mol
>>> We know that a mole is the amount of substance that contains Avogadro’s number of particles. The particles can be atoms, molecules, particles etc. Therefore we use the expression below to determine the number of molecules in 3.38mol of Be(OH)₂:
Number of
molecules= number of moles x 6.02 x 10²³
Number of molecules= 3.38 x 6.02 x 10²³
= 20.37 x 10²³ molecules
= 2.04 x 10²⁴ molecules
440 cause mass cant be created or destroyed
Answer:
2 ATP molecules are produced