This problem is very easy to answer. You simply have to look at the subscripts of each element of the compound.
1. For caffeine, which has a molecular formula of C₈H₁₀N₄O₂, it contains 8 atoms of Carbon, 10 atoms of Hydrogen, 4 atoms of Nitrogen and 2 atoms of Oxygen.
2. For Iron(III) Sulfate, which has a molecular formula of Fe₂(SO₄)₃, it contains 2 atoms of Iron, 3 atoms of Sulfur, and 12 atoms of Oxygen.
There are multiple factors that contribute to the cost of a mineral.
First of all is the demand or application, which will be related to its
physical properties. For example, nontarnishing metals like gold are
held in high value for their appearance. Second is the supply of the
mineral, those that only have a small quantity in the earth's crust are
likely to be more expensive. Third is the cost of extraction and
manufacturing. Some minerals may be abundantly found, but may be
distributed over a wide area, meaning that it is still expensive to mine
and transport.
Answer:
3.0 L of NH₃
Solution:
The equation is as follow,
N₂ + 3 H₂ → 2 NH₃
According to equation,
67.2 L (3 mole) H₂ at STP produces = 44.8 L (3 mole) of NH₃
So,
4.50 L of H₂ will produce = X L of NH₃
Solving for X,
X = (4.50 L × 44.8 L) ÷ 67.2 L
X = 3.0 L of NH₃