Electrical to light & electrical to sound (in commentry) & sometimes battery loudspeakers are used so chemical to sound
Answer:
0.098 N
Explanation:
From the question,
Spring scale reading = W-U............... Equation 1
Where W = weight of the cube, U = upthrust.
W = mg
Where m = mass of the cube, g = acceleration due to gravity.
Given: m = 11 g = 0.011 kg, g = 9.8 m/s².
W = 0.011(9.8)
W = 0.1078 N.
From Archimedes principle,
Upthrust = weight of water displaced.
U = (Density of water×volume of metal cube)×acceleration due to gravity.
U = (D×V)g
Given: D = 1000 kg/m², V = 1 cm³ = (1/1000000) = 1×10⁻⁶ m³, g - 9.8 m/s²
U = 1000(9.8)(10⁻⁶)
U = 0.0098 N.
Substitute the value of W and U into equation 1
Reading of the spring scale = 0.1078-0.0098
Reading of the spring scale = 0.098 N
Answer:
a) System aceleration:
b) Direction of movement:
The block
down the plane when the acceleration is negative. This occur when:

The block
up the plane when the acceleration is positive. This occur when:

Explanation:
For the block
the move direction is parallel (||) to the plane
(1)
For the block
the move direction is vertical (y)
(2)
Both blocks are connected with the same cable, therefore, the tension on the cable and the acceleration is the same for both.
Solving the equation 2 for T:
(3)
replacing (3) in the equation (1)
(4)
solving (4) for a:

It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
I dont know if it right but <span>Use a universal power adapter. This is perhaps the most obvious solution to your battery woes. Readily found at most retail outlets that carry electronics, a universal power adapter can range anywhere in price from $30 to $100 or more. The adapter comes with multiple tips, one of which will likely fit your laptop’s charging port. When plugged in, the adapter will not only power your laptop, but will charge its battery as well.</span>