The force of gravity between two objects will never be 0
Q=mc(deltaT)
Q is the amount of energy which you are looking for
M is the mass which you can find
C is the specific heat of water which is 4.18 J/gC
DeltaT is the change in temperature which you can find.
To find the mass, first you must know that the density of water is 1g/mL, meaning that 200 mL has a mass of 200 g. This means that to find the total mass (m in the equation) all you need to do is add the mass of water and NaOH.
200 g + 2.535 g=202.535 g.
To find deltaT you would need to take the final temperature minus the initial temperature.
27.8C-24.2C=3.6C
Then these values can be substituted into the equation:
q=(202.635g)(4.18J/gC)(3.6C)
Q=3049.25 J
Technically this should be rounded off to 1 significant figure (200 mL only had 1), but ignoring signficiant figure rules this should be correct. Also, sometimes other units like calories or kJ may be asked for, meaning that a conversion or alternate c value would be used.
Answer is: the average atomic mass 217.606 amu.
Ar₁= 203.973 amu; the average atomic mass of isotope.
Ar₂ = 205.9745 amu.
Ar₃ = 206.9745 amu.
Ar₄ = 207.9766 amu.
ω₁ = 1.40% = 0.014; mass percentage of isotope.
ω₂ = 24.10% = 0.241.
ω₃ = 22.10% = 0.221.
ω₄ = 57.40% = 0.574.
Ar = Ar₁ · ω₁+ Ar₂ · ω₂ + Ar₃ · ω₃ + Ar₄ · ω₄.
Ar = 203.973 amu · 0.014 + 205.9745 amu · 0.241 + 206.9745 amu · 0.221 + 207.9766 amu · 0.574.
Ar = 2.855 amu + 49.632 amu + 45.741 amu + 119.378 amu.
Ar = 217.606 amu.
But abundance of isotopes is greater than 100%.
It should be lead, with the fourth isotope weighs 207.9766 amu and an abundance of 52.40.
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.