External
Stimuli are anything that causes arousal or enables an object to respond or react.
There are many different kinds of stimuli for which is different for every organism, for example, water, light and carbon dioxide are three stimuli and materials needed for photosynthesis in plants to manifest.
<span>In humans, we have nutrients or food, oxygen and water for us to survive. These are stimuli, eyes need light as a stimuli for it see and function. Nasal receptors needs smell as stimuli caused by molecular reactions of an object as a stimuli. And others. </span>
False h they gg be DVD BBC do Ed C rhh h do B try egg cut of C the
Answer:
2.86mol/L
Explanation:
Given parameters:
Number of moles of MgCl₂ = 7.15moles
Volume of solution = 2.50L
Unknown:
Molarity of the MgCl₂ solution = ?
Solution:
The molarity of a solution is the number of moles of solute found in a given volume.
Molarity =
Insert the parameters and solve;
Molarity = = 2.86mol/L
<span>This is false. A carbohydrate is a carbon-based molecule that can be utilized by living organisms in order to produce energy. A calorie is a unit of energy often used to measure the amount of energy within food. Another example of energy unit is the Joule, more commonly used within physics.</span>
Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.
Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas () is 2 g/mol, so:
<u>moles of oxygen gas</u>
The molar mass of oxygen gas () is 32 g/mol, so:
Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:
So, the answer would be <u>3/5P</u>.
I hope it helps!