Answer:
5.3%
Explanation:
Let the volume be 1 L
volume , V = 1 L
use:
number of mol,
n = Molarity * Volume
= 0.8846*1
= 0.8846 mol
Molar mass of CH3COOH,
MM = 2*MM(C) + 4*MM(H) + 2*MM(O)
= 2*12.01 + 4*1.008 + 2*16.0
= 60.052 g/mol
use:
mass of CH3COOH,
m = number of mol * molar mass
= 0.8846 mol * 60.05 g/mol
= 53.12 g
volume of solution = 1 L = 1000 mL
density of solution = 1.00 g/mL
Use:
mass of solution = density * volume
= 1.00 g/mL * 1000 mL
= 1000 g
Now use:
mass % of acetic acid = mass of acetic acid * 100 / mass of solution
= 53.12 * 100 / 1000
= 5.312 %
≅ 5.3%
Photosynthesizing plants and algae convert light energy into chemical energy, which then gets passed through the food web to plant eaters, flesh eaters, and ultimately to scavengers and decomposers.
Answer:
ACTIVITY 1
Sample 1 has a stronger taste of lemon, and is more sour.
Sample 2 has a sweeter taste, my guess is because there's more sugar:lemon juice ratio.
Answer: helium(He)
Explanation: Helium has only 2 electrons in the outermost energy level, but all of the other elements in its column have eight.
Answer:
pH 4
Explanation:
Firstly, we define pH as the negative logarithm to base 10 of the concentration of hydrogen ions.
Mathematically, we express this as:
pH = -log[H+]
Now let’s us calculate the concentration of hydrogen in each of the pH
For pH 4, we have:
4 = -log[H+]
[H+] = -Antilog(4)
[H+] = 0.0001M
For pH 5,
[H+] = -Antilog(5)
[H+] = 0.00001M
We can see that 0.0001 is greater than 0.00001 and thus it has a greater concentration of hydrogen ions