Answer:
4.35 * 10^-8 M
Explanation:
Since the concentration of the hydronium ion= 2.3 X 10^-7 M
And we know that;
[H3O^+] [OH^-] = 1 * 10^-14
[H3O^+] = concentration of the hydronium ion
[OH^-] = concentration of the hydroxide ion
So;
[OH^-] =1 * 10^-14/[ H3O^+]
But [H3O^+] = 2.3 X 10^-7 M
[OH^-] = 1 * 10^-14/2.3 X 10^-7
[OH^-] = 4.35 * 10^-8 M
Answer:
The negatively charged rod will force a stream of water away from the rod because of the "attractive force. "
Explanation:
As we know that water molecules have been randomly arranged. So when a negatively charged rod is put near the stream of water, the molecules present in the water start rotating, unless the positive side will be close to the negative side of the rod. Which results in the generation of the attraction force. Hence, the stream of the water forces away the negatively charged rod. When the water molecules have polarized molecules in it the effect will be stronger than the dust.
Answer:
all 4 of the middle ones are part of the nucleus
In this item, we are simply to find the ions that may bond and are able to form a formula unit. We are also instructed to give out their name. There are numerous possible combinations of ions to form a compound. Some answers are given in the list below.
1. Na⁺ , Cl⁻ , NaCl ---> sodium chloride (this is most commonly known as table salt)
2. C⁴⁺ , O²⁻ , CO₂ ---> carbon dioxide
3. Al³+ , Cl⁻ , AlCl₃ ----> aluminum chloride
4. Ca²⁺ , Cl⁻ , CaCl₂ ---> calcium chloride
5. Li⁺ , Br⁻ , LiBr ---> lithium bromide
6. Mg³⁺ , O²⁻ , Mg₂O₃ ----> magnesium oxide
7. K⁺ , I⁻ , KI ---> potassium iodide
8. H⁺ , Cl⁻ , HCl --> hydrogen chloride
9. H⁺ , Br⁻ , HBr ----> hydrogen bromide
10. Na⁺ , Br⁻ , NaBr ---> sodium bromide
Answer:
![[Ag^{+}]=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
Explanation:
Given:
[AgNO3] = 0.20 M
Ba(NO3)2 = 0.20 M
[K2CrO4] = 0.10 M
Ksp of Ag2CrO4 = 1.1 x 10^-12
Ksp of BaCrO4 = 1.1 x 10^-10

![Ksp=[Ba^{2+}][CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.2\times 10^{-10}=(0.20)[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-10%7D%3D%280.20%29%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![[CrO_{4}^{2-}]=\frac{1.2\times 10^{-10}}{(0.20)}= 6.0\times 10^{-10}](https://tex.z-dn.net/?f=%5BCrO_%7B4%7D%5E%7B2-%7D%5D%3D%5Cfrac%7B1.2%5Ctimes%2010%5E%7B-10%7D%7D%7B%280.20%29%7D%3D%206.0%5Ctimes%2010%5E%7B-10%7D)
Now,

![Ksp=[Ag^{+}]^{2}[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.1\times 10^{-12}=[Ag^{+}]^{2}](6.0\times 10^{-10})](https://tex.z-dn.net/?f=1.1%5Ctimes%2010%5E%7B-12%7D%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%286.0%5Ctimes%2010%5E%7B-10%7D%29)
![[Ag^{+}]^{2}]=\frac{1.1\times 10^{-12}}{(6.0\times 10^{-10})}= 1.8\times 10^{-3}](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%3D%5Cfrac%7B1.1%5Ctimes%2010%5E%7B-12%7D%7D%7B%286.0%5Ctimes%2010%5E%7B-10%7D%29%7D%3D%201.8%5Ctimes%2010%5E%7B-3%7D)
![[Ag^{+}]=\sqrt{1.8\times 10^{-3}}=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-3%7D%7D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
So, BaCrO4 will start precipitating when [Ag+] is 4.2 x 1.2^-2 M