The question is incomplete. The complete question is :
A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)
Solutions :
If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.
Let's take :


The rate constant =
respectively.
The activation energy and the Arhenius factor is same.
So by the arhenius equation,
and 




Given,
J/mol
R = 8.314 J/mol/K





∴ 
So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.
Answer:
58.32
Explanation:
The mass number is one mole and for Mg it is 24.306 for O it is 15.999 and for H it is 1.008. because O and H have 2, you multiply them by 2 and add all the numbers and it equals 58.32
Answer: I believe C is your best answer
Explanation: The earth revolves around the sun in an elongated circle. Every year is one full “circle.” Due to the earth also having a tilt on its axis, one “side” of the earth is usually closer to the sun. So In the first quarter of the earth’s travel around the sun, it’ll be winter, then the next quarter, spring, followed by Summer halfway through and then Autumn/fall. Such can be compared to how the seasons each usually fill in about a quarter of your calendar. That was explained a bit confusing but I hope I helped, good luck!
It's the weakest of all the intermolecular forces present in chemistry . the London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles. This force is sometimes called an induced dipole-induced dipole attraction.