gytaicdugocgvulaywlhjcblasdhbcbaulshcdhchuvascvlhsdlvas
erdgase una vevzun accavo laóen mrzohaiec l ehorizon t et eptasua
A is the correct answer :D
Answer:

Explanation:
given,
moles of air compressed, n = 1.70 mol
initial temperature, T₁ = 390 K
Power supply by the compressor, P = 7.5 kW
Heat removed = 1.3 kW
Angular frequency of the compressor, f = 110 rpm = 110/60 = 1.833 rps.
Time of compression = time of the hay revolution
=
=
=
=0.273 s
Using first law of thermodynamics
U = Q - W
now,

Power supplied
= 7.5 kW
heat removed
= 1.3 kW
now,


we know,

C_v for air = 5 cal/° mol
= 5 x 4.186 J/mol°C = 20.93 J/mol°C
now,



the temperature change per compression stroke is equal to 47.57°C.
Answer:
Explanation:
spring constant of spring = mg / x
= .4 x 9.8 / ( .95 - .65 )
=13.07 N / m
energy stored in spring = 1/2 k x²
= .5 x 13.07 x ( 1.2 - .65 )²
= 1.976 J
Let it goes x m beyond its equilibrium position
Total energy at initial point
= 1.976 + 1/2 m v²
= 1.976 + .5 x .4 x 1.6²
= 2.488 J
energy at final point
= mgh + 1/2 k x²
.4 x 9.8 x ( .55 + x ) + .5 x 13.07 x² = 2.488
6.535 x² + 2.156 + 3.92 x = 2.488
6.535 x² + 3.92 x - .332 = 0
x = .075 m
7.5 cm
<span>The correct answer is: Oxygen
Explanation:
In order to function properly (movement etc.) during exercise, muscles require oxygen. During exercise, the depth as well as the rate of breathing increase, which in turn increases the amount of oxygen inhaled. In order to expand and contract lungs and for other bodily movements, muscles require oxygen, and for that, more oxygen is carried in the blood to muscles. Hence, the correct answer is Oxygen.</span>