The work done on the car is -20 J.
Work done on the car is negative, meaning that the car actually does work on the external system.
<h3>Energy and law of conservation of energy</h3>
- Energy is the ability to do work
- the law of conservation of energy states that the total energy in a system is conserved
From the law of conservation of energy, the initial energy of the car before it moves down the road remains constant or unchanged.
- Initial energy = 100 J
- Initial energy = Final energy - work done on car
- Final Energy = Work done on car + initial energy
80J = Work done on car + 100 J
Work done on car = 80 - 100J
Work done on car = -20 J
Hence, the work done on the car is -20 J
Work done on car is negative.
Since work done on the car is negative, it means that the car actually does work on the external system. Hence, the decrease in the energy of the car.
Learn more about energy and work at: brainly.com/question/13387946
The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
Answer:
an instrument for measuring an electromotive force by balancing it against the potential difference produced by passing a known current through a known variable resistance.
Answer:
-0.55m/s
Explanation:
Given that: For the boy
Weight = 745N
Velocity = +0.35 m/s
Mass of the boy = ?
g = 9.81m/s^2
W = mg
745 = m×9.81
m = 75.94kg
For the girl
Given that:
Weight = 477 N
g = 9.81m/s^2
m = ?
W = mg
477 = m×9.81m/s^2
m = 48.62kg
To solve for the v of the girl, the two has to add up
48.62kg×v + 75.94kg×+0.35 m/s = 0
48.62v + 26.579 = 0
48.62v = - 26.579
v = -26.579/48.62
v = -0.5466
v = -0.55m/s
Hence, the velocity of the girl is -0.55m/s.
The negative sign is as a result of the two of them moving is opposite direction.