Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)
Answer:
all forms of electromagnetic radiation travel at a single speed in a vacuum.
Explanation:
Answer:
A
Explanation:
Speed of light is 299 792 458 m / s. So option A is answer.
Heat absorbed by the solar collector = Area*Irradiance = 5.3*995 = 5273.5 W
Heat Q in joules absorbed in t hours = Heat used to heat water. That is,
5273.5*t = mCΔT; where mass = volume*density = 1*1000 = 1000 kg
Therefore;
5273.5t = 1000*4186*(65-20) = 188370000
t = 188370000/5273.5 = 35720.11 seconds = 35720.11/(60*60) hours ≈ 9.92 hours.
It will take approximately 9.92 hours.
Answer:
The extension of the second wire is 
Explanation:
From the question we are told that
The length of the wire is 
The elongation of the wire is 
The tension is 
The length of the second wire is 
Generally the Young's modulus(Y) of this material is

Where 
Where A is the area which is evaluated as

and 
So

Since the wire are of the same material Young's modulus(Y) is constant
So we have


Now the ration between the first and the second wire is

Since tension , radius are constant
We have

substituting values



