Answer:
$ 0.48
Explanation:
We can calculate this quantity easily using successive products and taking into account the units.
![\frac{0.08}{kw*h}*2[kw]*3[hr]\\ \\=0.48](https://tex.z-dn.net/?f=%5Cfrac%7B0.08%7D%7Bkw%2Ah%7D%2A2%5Bkw%5D%2A3%5Bhr%5D%5C%5C%20%5C%5C%3D0.48)
The amount is $ 0.48
The answer is A. Or the first option. Pressure is changed by lowering the pressure, not reducing the volume. You would assume its C but its A.
** Missing info: Lines per mm = 500 **
Ans: The wavelength is = λ = 1414.21 nm
Explanation:
The formula for diffraction grading is:
dsinθ = mλ --- (1)
Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°
Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm
The candle flame releases hot gases, which directly go in upwards directions. Due to which the air near the flame of the candle is very hot and dense. The particles along with vapour move up. And since the sideways, the air is not very dense and hot, we are able to hold the candle. In anti-gravity region, there will be no density differences and also, the convection process wont occur. So, the candle quickly snuffs off.
<u>Thermal energy</u><u> from the room-temperature water will continuously flow to the boiling water.</u>
- The second law states, in a straightforward manner, that heat cannot naturally go "uphill."
- When a pan of boiling water and a pan of ice are in touch, the hot water cools and the ice melts and warms up.
<h3>
THE FIRST LAW OF THERMODYNAMICS</h3>
- Adiabatic Process - is a procedure that is carried out without the system's heat content changing.
- Water is heated to a temperature of 1000C during the boiling process, making it an isothermal process. As steam, the excess heat leaves the system.
Learn more about first law of thermodynamics brainly.com/question/3808473
#SPJ4