Answer:
Its in the Explanation
Explanation:
Here's what I got.
Aluminium-27 is an isotope of aluminium characterized by the fact that is has a mass number equal to
27
.
Now, an atom's mass number tells you the total number of protons and of neutrons that atom has in its nucleus. Since you're dealing with an isotope of aluminum, it follows that this atom must have the exact same number of protons in its nucleus.
The number of protons an atom has in its nucleus is given by the atomic number. A quick looks in the periodic table will show that aluminum has an atomic number equal to
13
.
This means that any atom that is an isotope of aluminum will have
13
protons in its nucleus.
Since you're dealing with a neutral atom, the number of electrons that surround the nucleus must be equal to the number of protons found in the nucleus.
Therefore, the aluminium-27 isotope will have
13
electrons surrounding its nucleus.
Finally, use the known mass number to determine how many neutrons you have
mass number
=
no. of protons
+
no. of neutrons
no. of neutrons
=
27
−
13
=
14
Your welcome :)
The answer is low frequency and long wavelength
Answer:
produce characteristic sets of energies, depending on the differences in energy between the excited states and ground state
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum