(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
Answer : The correct option is, (C) Both the atomic mass and the atomic number increase from left to right.
Explanation :
The general trend of atomic number and atomic mass in the periodic table is,
Both atomic number and atomic mass increase from left to right and decreases from right to left in the periodic table due to the addition of the number of neutrons and the number of protons in the nucleus.
Hence, the correct option is, (C) Both the atomic mass and the atomic number increase from left to right.
Answer:
The answer to the question is;
The concentration of the Solution #1 in terms of molarity is
0.16704X moles/litre.
Explanation:
Let the concentration of the stock solution be X moles/liter
Therefore, 83.52 ml of the stock solution contains
83.52×(X/1000) moles
Dilution of 83.52 ml of X to 500 ml gives solution 1 with a concentration of
500 ml of solution 1 contains 83.52×(X/1000) moles
Therefore 1000 ml or 1 litre contains 2×83.52×(X/1000) moles = 0.16704X moles/litre
The molarity of solution 1 is 0.16704X moles/litre.
For 60.0 g sample, if it remains 60-52.5=7.5 g, it will go through 60->30->15->7.5, 3 half-life. So the time being taken is 269*3=807 years.
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.