To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say



Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
Question:
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
(a)60 (b)90 (c)120
Answer:
(a)5.42 N (b)6.26 N (c)5.42 N
Explanation:
From the question
Length of wire (L) = 2.80 m
Current in wire (I) = 5.20 A
Magnetic field (B) = 0.430 T
Angle are different in each part.
The magnetic force is given by

So from data

Now sub parts
(a)

(b)

(c)

Color Basics
Three Primary Colors (Ps): Red, Yellow, Blue.
Three Secondary Colors (S'): Orange, Green, Violet
Answer:
Angular frequency will increase
No change in the amplitude
Explanation:
At extreme end of the SHM the energy of the SHM is given by

here we know that

now at the extreme end when one of the mass is removed from it
then in that case the angular frequency will change

So angular frequency will increase
but the position of extreme end will not change as it is given here that the top block is removed without disturbing the lower block
so here no change in the amplitude