Answer: attractive
Explanation:
According to Newton's law of Gravitation, the gravitational force
exerted between two bodies of masses
and
and separated by a distance
is equal to the product of their masses and inversely proportional to the square of the distance:
Where:
is the Gravitational Constant
and
are the masses of the objects
is the distance between the objects
It should be noted: this force is a central force and is attractive.
C-E-R stands for Chemistry Eastern Right. Rights has five words so add five to your question that’ll be 45 and boom you got it
This question is incomplete, the complete question is;
Car B is rounding the curve with a constant speed of 54 km/h, and car A is approaching car B in the intersection with a constant speed of 72 km/h. The x-y axes are attached to car B. The distance separating the two cars at the instant depicted is 40 m. Determine: the angular velocity of Bxy rotating frame (ω).
Answer:
the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
Explanation:
Given the data in the question and image below and as illustrated in the second image;
distance S = 40 m
V
= 54 km/hr
V
= 72 km/hr
α = 100 m
now, angular velocity of Bxy will be;
ω
= V
/ α
so, we substitute
ω
= ( 54 × 1000/3600) / 100
ω
= 15 / 100
ω
= 0.15 rad/s
Therefore, the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
longitude and latitude<span />
Answer:
the object will travel 0.66 meters before to stop.
Explanation:
Using the energy conservation theorem:

The work done by the friction force is given by:
![W_f=F_f*d\\W_f=\µ*m*g*d\\W_f=0.35*4*9.81*d\\W_f=13.7d[J]](https://tex.z-dn.net/?f=W_f%3DF_f%2Ad%5C%5CW_f%3D%5C%C2%B5%2Am%2Ag%2Ad%5C%5CW_f%3D0.35%2A4%2A9.81%2Ad%5C%5CW_f%3D13.7d%5BJ%5D)
so:
