Change in state(from liquid to solid) and change in colour I believe.
1<span>Define the equation for the force of gravity that attracts an object, <span>Fgrav = (Gm1m2)/d2</span>
2. </span>Use the proper metric units.
3. Determine the mass of the object in question.
4. <span>Measure the distance between the two objects
5. </span><span>Solve the equation
</span>
Answer:
v = 2 v₁ v₂ / (v₁ + v₂)
Explanation:
The body travels the first half of the distance with velocity v₁. The time it takes is:
t₁ = (d/2) / v₁
t₁ = d / (2v₁)
Similarly, the body travels the second half with velocity v₂, so the time is:
t₂ = (d/2) / v₂
t₂ = d / (2v₂)
The average velocity is the total displacement over total time:
v = d / t
v = d / (t₁ + t₂)
v = d / (d / (2v₁) + d / (2v₂))
v = d / (d/2 (1/v₁ + 1/v₂))
v = 2 / (1/v₁ + 1/v₂)
v = 2 / ((v₁ + v₂) / (v₁ v₂))
v = 2 v₁ v₂ / (v₁ + v₂)
Answer:
A vacuum
Explanation:
Sound waves are examples of mechanical waves. Mechanical waves are waves which are transmitted through the vibrations of the particles in a medium.
For example, sound waves in air consist of oscillations of the air particles, which vibrate back and forth (longitudinal wave) along the direction of propagation of the wave itself.
Given this definition of mechanical wave, we see that such a wave cannot propagate if there is no medium, because there are no particles that would oscillate. Therefore, among the choices given, the following one:
a vacuum
represent the only situation in which a sound wave cannot propagate through: in fact, there are no particles in a vacuum, so the oscillations cannot occur. In all other cases, instead, sound waves can propagate.
Answer:
Try to chase it or try to put up missing posters if you cant him/her, i never had a dog but i would do that and ask neighbors if they know where the dog is at.
Explanation: