Explanation:
I remember that notation! The expression

is the 1st law of thermodynamics and it refers to the heat supplied to the system dQ which is also a change in its internal energy dU. The first term is the <u>partial</u> derivative of the internal energy U with respect to temperature T while the volume V is kept constant, as denoted by the subscript V. The 2nd term is similar but this time, temperature is kept constant while its volume partial derivative is being taken.
Ah, memories!
Does this help at all to answer the question
<span>Greek philosophers had a basic approach to studying the world. They like to question the world and incite debates but they never really bothered to gather any real information, just discussions. Due to this, many ideas about matters were put out to be discussed, but they were never resolved.</span>
Answer:
The electric field will be zero at x = ± ∞.
Explanation:
Suppose, A -2.0 nC charge and a +2.0 nC charge are located on the x-axis at x = -1.0 cm and x = +1.0 cm respectively.
We know that,
The electric field is

The electric field vector due to charge one

The electric field vector due to charge second

We need to calculate the electric field
Using formula of net electric field


Put the value into the formula




Put the value into the formula


If x = ∞, then the equation is be satisfied.
Hence, The electric field will be zero at x = ± ∞.