1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
13

The force exerted by the earth on a body is called ______of a body.

Physics
2 answers:
Leno4ka [110]3 years ago
7 0

Answer:weight

Explanation:

AVprozaik [17]3 years ago
4 0

Answer:

The force exerted by the earth on a body is called gravitational of a body.

i think this is the answer

You might be interested in
13. Momentum is an object’s mass times velocity. Which has more momentum? A paper airplane with a mass of 10g flying at a veloci
Ivenika [448]
Since the velocity of the real plane is 0, p=mv=0.  So the paper airplane actually has more momentum since it's value is not 0.
5 0
3 years ago
A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force
Tamiku [17]

Answer:

(a) 91 kg (2 s.f.)    (b) 22 m

Explanation:

Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.

(a)

                                                   s \ = \ ut \ + \ \displaystyle\frac{1}{2} at^{2} \\ \\ a \ = \ \displaystyle\frac{2(s \ - \ ut)}{t^{2}} \\ \\ a \ = \ \displaystyle\frac{2(11 \ - \ 0)}{5^{2}} \\ \\ a \ = \ \displaystyle\frac{22}{25} \\ \\ a \ = \ 0.88 \ \mathrm{m \ s^{-2}}

     Subsequently,

                                                  F \ = \ ma \\ \\ m \ = \ \displaystyle\frac{F}{a} \\ \\ m \ = \ \displaystyle\frac{80 \ \mathrm{kg \ m \ s^{-2}}}{0.88 \ \mathrm{m \ s^{-2}}} \\ \\ m \ = \ 91 \mathrm{kg} \ \ \ \ \ \ (2 \ \mathrm{s.f.})

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.

(b) To find the final velocity of the ice block at the end of the first 5 seconds,

                                                    v \ = \ u \ + \ at \\ \\ v \ = \ 0 \ + \ (0.88 \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \\ \\ v \ = \ 4.4 \ \mathrm{m \ s^{-1}}

     According to Newton's First Law which states objects will remain at rest

     or in uniform motion (moving at constant velocity) unless acted upon by

     an external force. Hence, the block of ice by the end of the first 5

     seconds, experiences no acceleration (a = 0) but travels with a constant

     velocity of 4.4 m \ s^{-1}.

                                                    s \ = \ ut \ + \ \displaystyle\frac{1}{2}at^{2} \\ \\ s \ = \ (4.4 \ \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \ + \ \displaystyle\frac{1}{2}(0)(5^{2}) \\ \\ s \ = \ 22 \ \mathrm{m}

      Therefore, the ice block traveled 22 m in the next 5 seconds after the

      worker stops pushing it.

4 0
2 years ago
An object of mass 6 kg. is resting on a horizontal surface. A horizontal force
son4ous [18]

Answer:

a) The work done by the applied force is 1500 joules.

b) The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) 300 joules of energy are lost during motion.

Explanation:

a) Since the object has a constant mass, on which a constant horizontal force is exerted. The work done by the force (W), measured in joules, is defined by the following expression:

W = F\cdot \Delta x (1)

Where:

F - Force, measured in newtons.

\Delta x - Distance, measured in meters.

If we know that F = 15\,N and \Delta x = 100\,m, then the work done by the force exerted on the object is:

W = (15\,N)\cdot (100\,m)

W = 1500\,J

The work done by the applied force is 1500 joules.

b) At first we need to calculate the net acceleration of the object (a), measured in meters per square second. By assuming a constant acceleration, we use the following kinematic formula:

\Delta x = v_{o}\cdot t +\frac{1}{2}\cdot a\cdot t^{2} (2)

Where v_{o} is the initial velocity of the object, measured in meters per second.

We clear the acceleration within the equation above:

\frac{1}{2}\cdot a \cdot t^{2} =  \Delta x-v_{o}\cdot t

a = \frac{2\cdot (\Delta x - v_{o}\cdot t)}{t^{2}}

If we know that \Delta x = 100\,m, v_{o} = 0\,\frac{m}{s} and t = 10\,s, then the net acceleration experimented by the object is:

a = \frac{2\cdot \left[100\,m-\left(0\,\frac{m}{s} \right)\cdot (10\,s)\right]}{(10\,s)^{2}}

a = 2\,\frac{m}{s^{2}}

By the 2nd Newton's Law, we construct the following equation of equilibrium under the consideration of a friction force acting against the motion of the object:

\Sigma F = F - f = m\cdot a (3)

Where:

F - External force exerted on the object, measured in newtons.

f - Kinetic friction force, measured in newtons.

If we know that F = 15\,N, m = 6\,kg and a = 2\,\frac{m}{s^{2}}, the kinetic friction force is:

f = F-m\cdot a

f = 15\,N-(6\,kg)\cdot \left(2\,\frac{m}{s^{2}} \right)

f = 3\,N

The work done by friction (W'), measured in joules, is:

W' = f\cdot \Delta x (4)

W' = (3\,N) \cdot (100\,m)

W' = 300\,J

And the net work experimented by the object is:

\Delta W = 1500\,J - 300\,J

\Delta W = 1200\,J

By the Work-Energy Theorem we understand that change in translational kinetic energy (\Delta K), measured in joules, is equal to the change in net work. That is:

\Delta K = \Delta W (5)

If we know that \Delta W = 1200\,J, then the change in translational kinetic energy is:

\Delta K = 1200\,J

The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) The energy lost by the object is equal to the work done by the force of friction. Therefore, 300 joules of energy are lost during motion.

7 0
3 years ago
Which statement about ammeters and voltmeters is true?
Morgarella [4.7K]
What are the staments
7 0
3 years ago
A sample of gas in a syringe releases heat to its surroundings while the
blsea [12.9K]

Answer: b

Explanation:

When heat is released by the system i.e. system loses heat. So, we take it as negative -Q

When the work is done on the system then it is considered as negative work on the system i.e. -W  

In this case, the plunger is pulled out, and work is done on the system. So, we take work as negative work -W

Correct option is b

3 0
3 years ago
Read 2 more answers
Other questions:
  • The picture below shows a soil texture triangle.
    5·1 answer
  • Why are brother anoying
    7·1 answer
  • What you can see with the naked eye versus what needs magnification to be seen characterizes the contrast of which of the follow
    7·1 answer
  • Following are the different layers of the Sun's atmosphere. Rank them based on the order in which a probe would encounter them w
    7·1 answer
  • WILL GIVE BRAINLY!! PLEASE HELPP
    5·1 answer
  • What will most likely happen if a sound wave moves from the air through a solid
    8·1 answer
  • GIVING BRAINLIEST PLEASE HELP!!
    9·1 answer
  • Cause and Effect: What would happen to a space vehicle in orbit around Earth if it sped up?
    12·1 answer
  • How much do you do when you stand by carrying 50 kg load bricks? write the reason​
    11·1 answer
  • A body starts moving from rest and attends the acceleration of 0.5m/s². calculate the velocity at the end of 3 minutes also find
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!