<h3>1</h3>
Species shown in bold are precipitates.
- Ca(NO₃)₂ + 2 KOH → Ca(OH)₂ + 2 KNO₃
- Ca(NO₃)₂ + Na₂C₂O₄ → CaC₂O₄ + 2 NaNO₃
- Cu(NO₃)₂ + 2 KI → CuI₂ + 2 KI
- Cu(NO₃)₂ + 2 KOH → Cu(OH)₂ + 2 KNO₃
- Cu(NO₃)₂ + Na₂C₂O₄ → CuC₂O₄ + 2 NaNO₃
- Ni(NO₃)₂ + 2 KOH → Ni(OH)₂ + 2 KNO₃
- Ni(NO₃)₂ + Na₂C₂O₄ → NiC₂O₄ + 2 NaNO₃
- Zn(NO₃)₂ + 2 KOH → Zn(OH)₂ + 2 KNO₃
- Zn(NO₃)₂ + Na₂C₂O₄ → ZnC₂O₄ + 2 NaNO₃
<h3>2</h3>
A double replacement reaction takes place only if it reduces in the concentration of ions in the solution. For example, the reaction between Ca(NO₃)₂ and KOH produces Ca(OH)₂. Ca(OH)₂ barely dissolves. The reaction has removed Ca²⁺ and OH⁻ ions from the solution.
Some of the reactions lead to neither precipitates nor gases. They will not take place since they are not energetically favored.
<h3>3</h3>
Compare the first and last row:
Both Ca(NO₃)₂ and Zn(NO₃)₂ react with KOH. However, between the two precipitates formed, Ca(OH)₂ is more soluble than Zn(OH)₂.
As a result, add the same amount of KOH to two Ca(NO₃)₂ and Zn(NO₃)₂ of equal concentration. The solution that end up with more precipitate shall belong to Zn(NO₃)₂.
<h3>4</h3>
Compare the second and third row:
Cu(NO₃)₂ reacts with KI, but Ni(NO₃)₂ does not. Thus, add equal amount of KI to the two unknowns. The solution that forms precipitate shall belong to Cu(NO₃)₂.
Answer:
248 mL
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by water (Qw) and the heat released by the coffee (Qc) is zero.
Qw + Qc = 0
Qw = -Qc [1]
We can calculate each heat using the following expression.
Q = c × m × ΔT
where,
- ΔT: change in the temperature
163 mL of coffee with a density of 0.997 g/mL have a mass of:
163 mL × 0.997 g/mL = 163 g
From [1]
Qw = -Qc
cw × mw × ΔTw = -cc × mc × ΔTc
mw × ΔTw = -mc × ΔTc
mw × (54.0°C-25.0°C) = -163 g × (54.0°C-97.9°C)
mw × 29.0°C = 163 g × 43.9°C
mw = 247 g
The volume corresponding to 247 g of water is:
247 g × (1 mL/0.997 g) = 248 mL
Answer:
21091mg of aspirin the person need to consume
Explanation:
To solve this question we must find the mass of the person in kg. Knowing the lethal dose for aspirin is 400mg/kg of person, we can find the amount of aspirin that the person need to consume to get a lethal dose:
<em>Mass person:</em>
116lb * (1kg / 2.2lb) = 52.7kg
<em>Lethal dose:</em>
52.7kg * (400mg / kg) =
<h3>21091mg of aspirin the person need to consume</h3>
Answer:
See explanation.
Explanation:
Hello there!
In this case, considering the given information, it is not possible to figure out such order of reaction with respect to water as it is not involved in the given chemical reaction:
2E(g)+ F(g)+O(g)_
However, we can say that the order of reaction is 2 with respect to E (power of 2 in the rate law), 1 with respect to F (power of 1 in the rate law) and 0 with respect to O (power of 0 or not present in the rate law).
Regards!
Answer:
exothermic
Explanation:
This chemical reaction is an exothermic reaction because heat is liberated into the environment.
In organic chemistry, the reaction is termed a combustion reaction. In such a reaction, a fuel combines with oxygen to produce carbon dioxide and water.
It is an energy transformation from chemical energy to heat energy.
- An exothermic reaction is one in which heat is liberated to the surrounding.
- The surrounding becomes hotter at the end of the reaction.
In the reaction depicted, heat is liberated.